bzoj 4671 异或图——容斥+斯特林反演+线性基
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=4671
考虑计算不是连通图的方案,乘上容斥系数来进行容斥。
可以枚举子集划分(复杂度是O(Bell))。就是 dfs ,记录已经有了几个集合,枚举当前元素放在哪个集合里(给它标一个 id )或者当前元素自己开一个集合。
然后就有了限制:不同点集之间不能有边。本来想限制同一点集必须是连通的,但不好限制,所以就不限制了,把这部分的影响算在容斥系数里。
如果限制不同点集之间不能有边,可以考虑高斯消元。有 k 条边有限制的话,就写出 k 个方程,解出自由元的个数 d ,2d 就可以加入答案。
不过线性基更好写。https://www.cnblogs.com/ljh2000-jump/p/5869991.html
在这道题里,可以算每个图的 nw 值, nw 的第 i 位是1表示第 i 条边限制不能选,而且这个图有第 i 条边;其余情况的话这个图选不选对于第 i 条边是否合法没有影响(也可以是第 i 条边没有限制,所以其合法性自然不会受到任何图选不选的影响),第 i 位上的值就是 0 。这个 nw 只要把 “有限制的边的位是1” 的那个 long long 和 “这个图有的边的位是1” 的那个 long long & 一下就行了。
然后合法的子集选取方案需要满足选中的图的 nw 异或起来是0。所以对这些 nw 求一个线性基,设线性基大小为 k 、一共 m 个图,则方案数为 2m-k ,因为不在线性基里的图可以任意选,选好它们后异或出来的结果可以通过线性基里的唯一一种选法来调成0。
这样就求出了 “至少有 i 个连通块” 的方案数 w[ i ] 。考虑怎么用它求出 “恰好有 i 个连通块” 的方案数 g[ i ] 。
设容斥系数为 f[ i ] 。统计答案的时候,有 \( ans=\sum\limits_{i=0}^{n}w[i]*f[i] \)
对于 g[ m ] 来说,在 w[ i ] 里包含了 S( m,i ) 个 g[ m ] 。所以 g[ m ] 会被加到答案里 \( \sum\limits_{i=0}^{n}S(m,i)*f[i] \) 次。
现在想要的效果是选取了合适的 f[ ] ,使得求好的 ans 里只包含了 1 个 g[ 1 ] 。
即: \( \sum\limits_{i=0}^{n}S(m,i)*f[i] = [ m=1 ] \)
设 \( h(m) = [ m=1 ] \) ,则 \( h[m]=\sum\limits_{i=0}^{n}S(m,i)*f[i] \)
因为 S( i , j ) = 0 ( j>i ) ,所以也就是 \( h[m]=\sum\limits_{i=0}^{m}S(m,i)*f[i] \)
这样就是斯特林反演的形式了。于是有 \( f[m]=\sum\limits_{i=0}^{m}(-1)^{m-i}*s(m,i)*h[i] \)
只有 i=1 时 h 的值是1,所以就是 \( f[m]=(-1)^{m-1}*(m-1)! \) (\( s(m,i)=\frac{m!}{m}=(m-1)! \))
这样就得到了容斥系数,就可以统计答案啦!
之所以这里的容斥系数不是那种 (-1)k 了,是因为那种系数适用于 “至少一个连通块” = “恰好一个连通块”+“恰好两个连通块+ ... ,而这里是:“至少一个连通块” = “恰好一个连通块 * S(1,1)”+“恰好两个连通块 * S(2,1)” + ... 。
注意到处开 long long 。
#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cmath>
#define ll long long
using namespace std;
const int N=,M=,K=;
int n,m,f[K],id[K];
ll ans,bin[N],b[N],base[M];
void init()
{
scanf("%d",&m); char ch[M];
scanf("%s",ch); int len=strlen(ch);
n=(+sqrt(+*len))/; f[]=;for(int i=;i<=n;i++)f[i]=f[i-]*i;
for(int i=n;i;i--)f[i]=((i-)&?-:)*f[i-]; bin[]=;for(int i=,j=max(m,len-);i<=j;i++)bin[i]=bin[i-]<<;//max(m,len-1) for(int i=;i<len;i++)b[]|=(ch[i]=='')?bin[i]:;
for(int i=;i<=m;i++)
{
scanf("%s",ch);
for(int j=;j<len;j++)b[i]|=(ch[j]=='')?bin[j]:;
}
}
void dfs(int cr,int cnt)
{
if(cr>n)
{
ll t=;int bh=;//ll
for(int i=;i<=n;i++)
for(int j=i+;j<=n;j++,bh++)
t|=(id[i]==id[j])?:bin[bh];
int tot=;
for(int k=;k<=bh;k++)base[k]=;//<=bh
for(int i=;i<=m;i++)
{
ll nw=b[i]&t;
for(int k=;k<=bh;k++)//bh
if(nw&bin[k])
{
if(!base[k]){base[k]=nw;tot++;break;}
nw^=base[k];
}
}
ans+=bin[m-tot]*f[cnt];
return;
}
for(int i=;i<=cnt;i++)
id[cr]=i,dfs(cr+,cnt);
id[cr]=cnt+; dfs(cr+,cnt+);
}
int main()
{
init();
dfs(,);
printf("%lld\n",ans);
return ;
}
bzoj 4671 异或图——容斥+斯特林反演+线性基的更多相关文章
- bzoj 4671 异或图 —— 容斥+斯特林反演+线性基
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=4671 首先,考虑容斥,就是设 \( t[i] \) 表示至少有 \( i \) 个连通块的方 ...
- 【bzoj4671】异或图(容斥+斯特林反演+线性基)
传送门 题意: 给出\(s,s\leq 60\)张图,每张图都有\(n,n\leq 10\)个点. 现在问有多少个图的子集,满足这些图的边"异或"起来后,这张图为连通图. 思路: ...
- BZOJ4671 异或图 斯特林反演+线性基
题目传送门 https://lydsy.com/JudgeOnline/problem.php?id=4671 题解 半年前刚学计数的时候对这道题怀着深深的景仰,现在终于可以来做这道题了. 类似于一般 ...
- BZOJ 4671 异或图 | 线性基 容斥 DFS
题面 Description 定义两个结点数相同的图 G1 与图 G2 的异或为一个新的图 G, 其中如果 (u, v) 在 G1 与 G2 中的出现次数之和为 1, 那么边 (u, v) 在 G 中 ...
- BZOJ4671 异或图(容斥+线性基)
题意 定义两个结点数相同的图 \(G_1\) 与图 \(G_2\) 的异或为一个新的图 \(G\) ,其中如果 \((u, v)\) 在 \(G_1\) 与 \(G_2\) 中的出现次数之和为 \(1 ...
- [BZOJ 4671]异或图
Description 题库链接 给定 \(s\) 个结点数相同且为 \(n\) 的图 \(G_1\sim G_s\) ,设 \(S = \{G_1, G_2,\cdots , G_s\}\) ,问 ...
- HDU 2841 容斥 或 反演
$n,m <= 1e5$ ,$i<=n$,$j<=m$,求$(i⊥j)$对数 /** @Date : 2017-09-26 23:01:05 * @FileName: HDU 284 ...
- 【题解】[HAOI2018]染色(NTT+容斥/二项式反演)
[题解][HAOI2018]染色(NTT+容斥/二项式反演) 可以直接写出式子: \[ f(x)={m \choose x}n!{(\dfrac 1 {(Sx)!})}^x(m-x)^{n-Sx}\d ...
- 【BZOJ】4671: 异或图
题解 写完之后开始TTTTTTT--懵逼 这道题我们考虑一个东西叫容斥系数啊>< 这个是什么东西呢 也就是\(\sum_{i = 1}^{m}\binom{m}{i}f_{i} = [m ...
随机推荐
- 简单的aop实现日志打印(切入点表达式)
Spring中可以使用注解或XML文件配置的方式实现AOP. 1.导入jar包 com.springsource.net.sf.cglib -2.2.0.jar com.springsource.or ...
- 移动端给img元素添加content: "";
误给img原始添加 content: "";属性后发现在ios系统中图片是不会显示的android系统是正常的
- Codeforces Round #365 (Div. 2) D.Mishka and Interesting sum 树状数组+离线
D. Mishka and Interesting sum time limit per test 3.5 seconds memory limit per test 256 megabytes in ...
- VFIO简介
VFIO是一套用户态驱动框架,它提供两种基本服务: 向用户态提供访问硬件设备的接口 向用户态提供配置IOMMU的接口 VFIO由平台无关的接口层与平台相关的实现层组成.接口层将服务抽象为IOCTL命令 ...
- ImageView显示网络上的图片
ImageView显示网络上的图片 一.简介 二.方法 1)ImageView显示网络上的图片方法 第一步:从网络上下载图片 byte[] byteArr = downImage();//这个是自己写 ...
- mysql 转移数据目录
由于MySql的数据库文件和日志文件比较大,导致磁盘空间不够,在添加新的磁盘之后,需要把MySql的数据转移到新挂载的目录下. 1.停止MySql服务: /etc/rc.d/init.d/mysql ...
- Binary Differences
https://csacademy.com/contest/archive/task/binary-differences n个数,只有0和1,求所有子区间价值不相同的有多少中,价值是0的个数-1的个 ...
- MYSQL变量和状态
mysql设置变量是在my.cnf文件里,修改配置文件后需要重启mysql的服务,才能生效.但是在线上服务器是不允许随便重启的,我们可以用命令直接修改变量值,使其生效.然后再修改配置文件中的值,以防止 ...
- C++空类和string类
1. 空类 1.1 空类默认哪六个成员函数. class Empty { public: Empty(); //缺省构造函数 Empty e; Empty( const Empty& ); / ...
- iOS自动化探索(二)WDA API的使用
前面我们已经安装好了WebdriverAgent, 现在可以用Facebook官方提供的API来进行一些操作 WDA API官方页面: https://github.com/facebook/WebD ...