bzoj 4671 异或图——容斥+斯特林反演+线性基
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=4671
考虑计算不是连通图的方案,乘上容斥系数来进行容斥。
可以枚举子集划分(复杂度是O(Bell))。就是 dfs ,记录已经有了几个集合,枚举当前元素放在哪个集合里(给它标一个 id )或者当前元素自己开一个集合。
然后就有了限制:不同点集之间不能有边。本来想限制同一点集必须是连通的,但不好限制,所以就不限制了,把这部分的影响算在容斥系数里。
如果限制不同点集之间不能有边,可以考虑高斯消元。有 k 条边有限制的话,就写出 k 个方程,解出自由元的个数 d ,2d 就可以加入答案。
不过线性基更好写。https://www.cnblogs.com/ljh2000-jump/p/5869991.html
在这道题里,可以算每个图的 nw 值, nw 的第 i 位是1表示第 i 条边限制不能选,而且这个图有第 i 条边;其余情况的话这个图选不选对于第 i 条边是否合法没有影响(也可以是第 i 条边没有限制,所以其合法性自然不会受到任何图选不选的影响),第 i 位上的值就是 0 。这个 nw 只要把 “有限制的边的位是1” 的那个 long long 和 “这个图有的边的位是1” 的那个 long long & 一下就行了。
然后合法的子集选取方案需要满足选中的图的 nw 异或起来是0。所以对这些 nw 求一个线性基,设线性基大小为 k 、一共 m 个图,则方案数为 2m-k ,因为不在线性基里的图可以任意选,选好它们后异或出来的结果可以通过线性基里的唯一一种选法来调成0。
这样就求出了 “至少有 i 个连通块” 的方案数 w[ i ] 。考虑怎么用它求出 “恰好有 i 个连通块” 的方案数 g[ i ] 。
设容斥系数为 f[ i ] 。统计答案的时候,有 \( ans=\sum\limits_{i=0}^{n}w[i]*f[i] \)
对于 g[ m ] 来说,在 w[ i ] 里包含了 S( m,i ) 个 g[ m ] 。所以 g[ m ] 会被加到答案里 \( \sum\limits_{i=0}^{n}S(m,i)*f[i] \) 次。
现在想要的效果是选取了合适的 f[ ] ,使得求好的 ans 里只包含了 1 个 g[ 1 ] 。
即: \( \sum\limits_{i=0}^{n}S(m,i)*f[i] = [ m=1 ] \)
设 \( h(m) = [ m=1 ] \) ,则 \( h[m]=\sum\limits_{i=0}^{n}S(m,i)*f[i] \)
因为 S( i , j ) = 0 ( j>i ) ,所以也就是 \( h[m]=\sum\limits_{i=0}^{m}S(m,i)*f[i] \)
这样就是斯特林反演的形式了。于是有 \( f[m]=\sum\limits_{i=0}^{m}(-1)^{m-i}*s(m,i)*h[i] \)
只有 i=1 时 h 的值是1,所以就是 \( f[m]=(-1)^{m-1}*(m-1)! \) (\( s(m,i)=\frac{m!}{m}=(m-1)! \))
这样就得到了容斥系数,就可以统计答案啦!
之所以这里的容斥系数不是那种 (-1)k 了,是因为那种系数适用于 “至少一个连通块” = “恰好一个连通块”+“恰好两个连通块+ ... ,而这里是:“至少一个连通块” = “恰好一个连通块 * S(1,1)”+“恰好两个连通块 * S(2,1)” + ... 。
注意到处开 long long 。
#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cmath>
#define ll long long
using namespace std;
const int N=,M=,K=;
int n,m,f[K],id[K];
ll ans,bin[N],b[N],base[M];
void init()
{
scanf("%d",&m); char ch[M];
scanf("%s",ch); int len=strlen(ch);
n=(+sqrt(+*len))/; f[]=;for(int i=;i<=n;i++)f[i]=f[i-]*i;
for(int i=n;i;i--)f[i]=((i-)&?-:)*f[i-]; bin[]=;for(int i=,j=max(m,len-);i<=j;i++)bin[i]=bin[i-]<<;//max(m,len-1) for(int i=;i<len;i++)b[]|=(ch[i]=='')?bin[i]:;
for(int i=;i<=m;i++)
{
scanf("%s",ch);
for(int j=;j<len;j++)b[i]|=(ch[j]=='')?bin[j]:;
}
}
void dfs(int cr,int cnt)
{
if(cr>n)
{
ll t=;int bh=;//ll
for(int i=;i<=n;i++)
for(int j=i+;j<=n;j++,bh++)
t|=(id[i]==id[j])?:bin[bh];
int tot=;
for(int k=;k<=bh;k++)base[k]=;//<=bh
for(int i=;i<=m;i++)
{
ll nw=b[i]&t;
for(int k=;k<=bh;k++)//bh
if(nw&bin[k])
{
if(!base[k]){base[k]=nw;tot++;break;}
nw^=base[k];
}
}
ans+=bin[m-tot]*f[cnt];
return;
}
for(int i=;i<=cnt;i++)
id[cr]=i,dfs(cr+,cnt);
id[cr]=cnt+; dfs(cr+,cnt+);
}
int main()
{
init();
dfs(,);
printf("%lld\n",ans);
return ;
}
bzoj 4671 异或图——容斥+斯特林反演+线性基的更多相关文章
- bzoj 4671 异或图 —— 容斥+斯特林反演+线性基
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=4671 首先,考虑容斥,就是设 \( t[i] \) 表示至少有 \( i \) 个连通块的方 ...
- 【bzoj4671】异或图(容斥+斯特林反演+线性基)
传送门 题意: 给出\(s,s\leq 60\)张图,每张图都有\(n,n\leq 10\)个点. 现在问有多少个图的子集,满足这些图的边"异或"起来后,这张图为连通图. 思路: ...
- BZOJ4671 异或图 斯特林反演+线性基
题目传送门 https://lydsy.com/JudgeOnline/problem.php?id=4671 题解 半年前刚学计数的时候对这道题怀着深深的景仰,现在终于可以来做这道题了. 类似于一般 ...
- BZOJ 4671 异或图 | 线性基 容斥 DFS
题面 Description 定义两个结点数相同的图 G1 与图 G2 的异或为一个新的图 G, 其中如果 (u, v) 在 G1 与 G2 中的出现次数之和为 1, 那么边 (u, v) 在 G 中 ...
- BZOJ4671 异或图(容斥+线性基)
题意 定义两个结点数相同的图 \(G_1\) 与图 \(G_2\) 的异或为一个新的图 \(G\) ,其中如果 \((u, v)\) 在 \(G_1\) 与 \(G_2\) 中的出现次数之和为 \(1 ...
- [BZOJ 4671]异或图
Description 题库链接 给定 \(s\) 个结点数相同且为 \(n\) 的图 \(G_1\sim G_s\) ,设 \(S = \{G_1, G_2,\cdots , G_s\}\) ,问 ...
- HDU 2841 容斥 或 反演
$n,m <= 1e5$ ,$i<=n$,$j<=m$,求$(i⊥j)$对数 /** @Date : 2017-09-26 23:01:05 * @FileName: HDU 284 ...
- 【题解】[HAOI2018]染色(NTT+容斥/二项式反演)
[题解][HAOI2018]染色(NTT+容斥/二项式反演) 可以直接写出式子: \[ f(x)={m \choose x}n!{(\dfrac 1 {(Sx)!})}^x(m-x)^{n-Sx}\d ...
- 【BZOJ】4671: 异或图
题解 写完之后开始TTTTTTT--懵逼 这道题我们考虑一个东西叫容斥系数啊>< 这个是什么东西呢 也就是\(\sum_{i = 1}^{m}\binom{m}{i}f_{i} = [m ...
随机推荐
- LAMP服务器的搭建
LAMP是一组构建Web应用平台的开源软件解决方案,它是一个开源套件组合.其中L:linux,A :Apache HTTP服务器,M : MySQL或MariaDB,P : perl或Python.这 ...
- scala学习手记37 - 容器的使用
这次统一看一下scala中容器类的几个方法. Set filter()方法 filter()方法用来从Set中过滤获取含有指定特征的元素.示例代码如下: val colors1 = Set(" ...
- Nginx的长链接
网站使用程序discuz3访问都正常,只有用户登录存在异常,具体就是:用户登陆后会马上显示未登录,然后刷新一下又变成了登录中 这个问题的原因显然是由于session导致,后台有多个web机器,当用户登 ...
- TypeScript 教程&手册
参考:https://www.w3cschool.cn/typescript/ https://www.gitbook.com/book/zhongsp/typescript-handbook/det ...
- javascript练习题·(1)
1.参数集合是什么? (function(){ return typeof arguments; })(); 的结果是? typeOf只能以字符串的形式返回数据类型 js中包括6种数据类型--Numb ...
- Netty原理
1. Netty简介Netty是一个高性能.异步事件驱动的NIO框架,基于JAVA NIO提供的API实现.它提供了对TCP.UDP和文件传输的支持,作为一个异步NIO框架,Netty的所有IO操作都 ...
- 牛客练习赛13D
定义一个数字为幸运数字当且仅当它的所有数位都是4或者7.比如说,47.744.4都是幸运数字而5.17.467都不是.现在想知道在1...n的第k小的排列(permutation,https://en ...
- socket长连接和短链接区别
短连接 连接->传输数据->关闭连接 HTTP是无状态的,浏览器和服务器每进行一次HTTP操作,就建立一次连接,但任务结束后就中断连接.短连接是指SOCKET连接后发送后接收完数据后马上断 ...
- 51nod 1009 数位dp入门
http://www.51nod.com/onlineJudge/questionCode.html#!problemId=1009 1009 数字1的数量 基准时间限制:1 秒 空间限制:13107 ...
- vue 时间格式化
export function formatDate(date, fmt) { if (/(y+)/.test(fmt)) { fmt = fmt.replace(RegExp.$1, (date.g ...