题目:https://www.lydsy.com/JudgeOnline/problem.php?id=4671

考虑计算不是连通图的方案,乘上容斥系数来进行容斥。

可以枚举子集划分(复杂度是O(Bell))。就是 dfs ,记录已经有了几个集合,枚举当前元素放在哪个集合里(给它标一个 id )或者当前元素自己开一个集合。

然后就有了限制:不同点集之间不能有边。本来想限制同一点集必须是连通的,但不好限制,所以就不限制了,把这部分的影响算在容斥系数里。

如果限制不同点集之间不能有边,可以考虑高斯消元。有 k 条边有限制的话,就写出 k 个方程,解出自由元的个数 d ,2d 就可以加入答案。

不过线性基更好写。https://www.cnblogs.com/ljh2000-jump/p/5869991.html

在这道题里,可以算每个图的 nw 值, nw 的第 i 位是1表示第 i 条边限制不能选,而且这个图有第 i 条边;其余情况的话这个图选不选对于第 i 条边是否合法没有影响(也可以是第 i 条边没有限制,所以其合法性自然不会受到任何图选不选的影响),第 i 位上的值就是 0 。这个 nw 只要把 “有限制的边的位是1” 的那个 long long 和 “这个图有的边的位是1” 的那个 long long & 一下就行了。

  然后合法的子集选取方案需要满足选中的图的 nw 异或起来是0。所以对这些 nw 求一个线性基,设线性基大小为 k 、一共 m 个图,则方案数为 2m-k ,因为不在线性基里的图可以任意选,选好它们后异或出来的结果可以通过线性基里的唯一一种选法来调成0。

这样就求出了 “至少有 i 个连通块” 的方案数 w[ i ] 。考虑怎么用它求出 “恰好有 i 个连通块” 的方案数 g[ i ] 。

设容斥系数为 f[ i ] 。统计答案的时候,有 \( ans=\sum\limits_{i=0}^{n}w[i]*f[i] \)

对于 g[ m ] 来说,在 w[ i ] 里包含了 S( m,i ) 个 g[ m ] 。所以 g[ m ] 会被加到答案里 \( \sum\limits_{i=0}^{n}S(m,i)*f[i] \) 次。

现在想要的效果是选取了合适的 f[  ] ,使得求好的 ans 里只包含了 1 个 g[ 1 ] 。

即:  \( \sum\limits_{i=0}^{n}S(m,i)*f[i] = [ m=1 ] \)

设 \( h(m) = [ m=1 ] \) ,则 \( h[m]=\sum\limits_{i=0}^{n}S(m,i)*f[i] \)

因为 S( i , j ) = 0 ( j>i ) ,所以也就是 \( h[m]=\sum\limits_{i=0}^{m}S(m,i)*f[i] \)

这样就是斯特林反演的形式了。于是有 \( f[m]=\sum\limits_{i=0}^{m}(-1)^{m-i}*s(m,i)*h[i] \)

只有 i=1 时 h 的值是1,所以就是 \( f[m]=(-1)^{m-1}*(m-1)! \)   (\( s(m,i)=\frac{m!}{m}=(m-1)! \))

这样就得到了容斥系数,就可以统计答案啦!

之所以这里的容斥系数不是那种 (-1)k 了,是因为那种系数适用于 “至少一个连通块” = “恰好一个连通块”+“恰好两个连通块+ ...  ,而这里是:“至少一个连通块” = “恰好一个连通块 * S(1,1)”+“恰好两个连通块 * S(2,1)” + ... 。

注意到处开 long long 。

#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cmath>
#define ll long long
using namespace std;
const int N=,M=,K=;
int n,m,f[K],id[K];
ll ans,bin[N],b[N],base[M];
void init()
{
scanf("%d",&m); char ch[M];
scanf("%s",ch); int len=strlen(ch);
n=(+sqrt(+*len))/; f[]=;for(int i=;i<=n;i++)f[i]=f[i-]*i;
for(int i=n;i;i--)f[i]=((i-)&?-:)*f[i-]; bin[]=;for(int i=,j=max(m,len-);i<=j;i++)bin[i]=bin[i-]<<;//max(m,len-1) for(int i=;i<len;i++)b[]|=(ch[i]=='')?bin[i]:;
for(int i=;i<=m;i++)
{
scanf("%s",ch);
for(int j=;j<len;j++)b[i]|=(ch[j]=='')?bin[j]:;
}
}
void dfs(int cr,int cnt)
{
if(cr>n)
{
ll t=;int bh=;//ll
for(int i=;i<=n;i++)
for(int j=i+;j<=n;j++,bh++)
t|=(id[i]==id[j])?:bin[bh];
int tot=;
for(int k=;k<=bh;k++)base[k]=;//<=bh
for(int i=;i<=m;i++)
{
ll nw=b[i]&t;
for(int k=;k<=bh;k++)//bh
if(nw&bin[k])
{
if(!base[k]){base[k]=nw;tot++;break;}
nw^=base[k];
}
}
ans+=bin[m-tot]*f[cnt];
return;
}
for(int i=;i<=cnt;i++)
id[cr]=i,dfs(cr+,cnt);
id[cr]=cnt+; dfs(cr+,cnt+);
}
int main()
{
init();
dfs(,);
printf("%lld\n",ans);
return ;
}

bzoj 4671 异或图——容斥+斯特林反演+线性基的更多相关文章

  1. bzoj 4671 异或图 —— 容斥+斯特林反演+线性基

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=4671 首先,考虑容斥,就是设 \( t[i] \) 表示至少有 \( i \) 个连通块的方 ...

  2. 【bzoj4671】异或图(容斥+斯特林反演+线性基)

    传送门 题意: 给出\(s,s\leq 60\)张图,每张图都有\(n,n\leq 10\)个点. 现在问有多少个图的子集,满足这些图的边"异或"起来后,这张图为连通图. 思路: ...

  3. BZOJ4671 异或图 斯特林反演+线性基

    题目传送门 https://lydsy.com/JudgeOnline/problem.php?id=4671 题解 半年前刚学计数的时候对这道题怀着深深的景仰,现在终于可以来做这道题了. 类似于一般 ...

  4. BZOJ 4671 异或图 | 线性基 容斥 DFS

    题面 Description 定义两个结点数相同的图 G1 与图 G2 的异或为一个新的图 G, 其中如果 (u, v) 在 G1 与 G2 中的出现次数之和为 1, 那么边 (u, v) 在 G 中 ...

  5. BZOJ4671 异或图(容斥+线性基)

    题意 定义两个结点数相同的图 \(G_1\) 与图 \(G_2\) 的异或为一个新的图 \(G\) ,其中如果 \((u, v)\) 在 \(G_1\) 与 \(G_2\) 中的出现次数之和为 \(1 ...

  6. [BZOJ 4671]异或图

    Description 题库链接 给定 \(s\) 个结点数相同且为 \(n\) 的图 \(G_1\sim G_s\) ,设 \(S = \{G_1, G_2,\cdots , G_s\}\) ,问 ...

  7. HDU 2841 容斥 或 反演

    $n,m <= 1e5$ ,$i<=n$,$j<=m$,求$(i⊥j)$对数 /** @Date : 2017-09-26 23:01:05 * @FileName: HDU 284 ...

  8. 【题解】[HAOI2018]染色(NTT+容斥/二项式反演)

    [题解][HAOI2018]染色(NTT+容斥/二项式反演) 可以直接写出式子: \[ f(x)={m \choose x}n!{(\dfrac 1 {(Sx)!})}^x(m-x)^{n-Sx}\d ...

  9. 【BZOJ】4671: 异或图

    题解 写完之后开始TTTTTTT--懵逼 这道题我们考虑一个东西叫容斥系数啊>< 这个是什么东西呢 也就是\(\sum_{i = 1}^{m}\binom{m}{i}f_{i} = [m ...

随机推荐

  1. SpringBoot 表单验证

    Valid 注解 JSR 303 校验框架注解类: • @NotNull 注解元素必须是非空 • @Null 注解元素必须是空 • @Digits 验证数字构成是否合法 • @Future 验证是否在 ...

  2. 如何实现一个简单的RPC

    在如何给老婆解释什么是RPC中,我们讨论了RPC的实现思路. 那么这一次,就让我们通过代码来实现一个简单的RPC吧! RPC的实现原理 正如上一讲所说,RPC主要是为了解决的两个问题: 解决分布式系统 ...

  3. MySQL的索引实现原理

    MySQL数据库索引总结使用索引的原由数据结构Hash.平衡二叉树.B树.B+树区别机械硬盘.固态硬盘区别Myisam与Innodb B+树的区别MySQL中的索引什么数据结构B+树中的节点到底存放多 ...

  4. E - Water Distribution

    E - Water Distribution 题目大意: 有\(N\)座城市,给定这\(N\)座城市的坐标和初始的水量\(x_i,y_i,a_i\),在两个城市之间运水的花费是两个城市的欧几里得距离. ...

  5. 深入理解Java虚拟机(1)--Java内存区域

    运行时数据区域 Java虚拟机在执行Java程序的过程中会把它所管理的内存划分为若干个不同的数据区域.这些区域有各自的用途,以及创建和销毁的时间,有的区域随着虚拟机进程的启动而存在,有些区域则是依赖用 ...

  6. timer使用方法

    , HEART_EXPIRE}; , }; /* 第一次调用要多长时间 */ struct itimerval it; it.it_interval = tv_interval; it.it_valu ...

  7. JAVA集合类汇总 - 转载

    一.集合与数组 数组(可以存储基本数据类型)是用来存现对象的一种容器,但是数组的长度固定,不适合在对象数量未知的情况下使用. 集合(只能存储对象,对象类型可以不一样)的长度可变,可在多数情况下使用. ...

  8. UOJ34 多项式乘法(非递归版)

    本文版权归ljh2000和博客园共有,欢迎转载,但须保留此声明,并给出原文链接,谢谢合作. 本文作者:ljh2000 作者博客:http://www.cnblogs.com/ljh2000-jump/ ...

  9. scala学习手记23 - 函数值

    scala的一个最主要的特性就是支持函数编程.函数是函数编程中的一等公民:函数可以作为参数传递给其他函数,可以作为其他函数的返回值,甚至可以在其它函数中嵌套.这些高阶函数称为函数值. 举一个简单的例子 ...

  10. LeetCode第[55]题(Java):Jump Game

    题目:跳跳游戏 难度:Medium 题目内容: Given an array of non-negative integers, you are initially positioned at the ...