Time Limit: 1000MS   Memory Limit: 65536K
Total Submissions: 6334   Accepted: 3125

Description

The Global Aerial Research Centre has been allotted the task of building the fifth generation of mobile phone nets in Sweden. The most striking reason why they got the job, is their discovery of a new, highly noise resistant, antenna. It is called 4DAir, and
comes in four types. Each type can only transmit and receive signals in a direction aligned with a (slightly skewed) latitudinal and longitudinal grid, because of the interacting electromagnetic field of the earth. The four types correspond to antennas operating
in the directions north, west, south, and east, respectively. Below is an example picture of places of interest, depicted by twelve small rings, and nine 4DAir antennas depicted by ellipses covering them. 
 
Obviously, it is desirable to use as few antennas as possible, but still provide coverage for each place of interest. We model the problem as follows: Let A be a rectangular matrix describing the surface of Sweden, where an entry of A either is a point of interest,
which must be covered by at least one antenna, or empty space. Antennas can only be positioned at an entry in A. When an antenna is placed at row r and column c, this entry is considered covered, but also one of the neighbouring entries (c+1,r),(c,r+1),(c-1,r),
or (c,r-1), is covered depending on the type chosen for this particular antenna. What is the least number of antennas for which there exists a placement in A such that all points of interest are covered? 

Input

On the first row of input is a single positive integer n, specifying the number of scenarios that follow. Each scenario begins with a row containing two positive integers h and w, with 1 <= h <= 40 and 0 < w <= 10. Thereafter is a matrix presented, describing
the points of interest in Sweden in the form of h lines, each containing w characters from the set ['*','o']. A '*'-character symbolises a point of interest, whereas a 'o'-character represents open space. 

Output

For each scenario, output the minimum number of antennas necessary to cover all '*'-entries in the scenario's matrix, on a row of its own.

Sample Input

2
7 9
ooo**oooo
**oo*ooo*
o*oo**o**
ooooooooo
*******oo
o*o*oo*oo
*******oo
10 1
*
*
*
o
*
*
*
*
*
*

Sample Output

17
5

好吧。

做了几道简单的匈牙利算法和简单的最小覆盖。。最终遇到一道纠结的题了。。

这题目我看了小优酱的题意解析(Orz) 点击打开链接 小优酱写解题报告真的非常具体。。

从他(她)那里我学到了非常多东西。。在此十分感谢。。尽管他(她)都不知道我。。(233)

无向二分图的最小路径覆盖 = 顶点数 – 最大二分匹配数/2


#include<cstdio>
#include<cstring>
#include<algorithm>
#include<iostream> using namespace std; const int M = 1000 + 5;
int dx[]= {-1,1,0,0};
int dy[]= {0,0,-1,1}; int t, m, n; //输入数据
int link[M]; //用于推断是否为饱和点。
int city[M][M]; //用于记录城市
int v1, v2; //拆分后建立的图
int sum; //城市的总数
bool MAP[M][M]; //建立后的图
bool cover[M]; //用于查看是否为覆盖点
int ans; //最大分配值
char str; //用于输入字符串 bool dfs(int x) //匈牙利算法
{
for(int y=1; y<=v2; y++)
{
if(MAP[x][y] && !cover[y])
{
cover[y]=true;
if(!link[y] || dfs( link[y] ))
{
link[y]=x;
return true;
}
}
}
return false;
} int main()
{
scanf("%d", &t);
while( t-- )
{
memset(city, 0, sizeof(city));
memset(link, 0, sizeof(link));
memset(MAP, false, sizeof(MAP));
ans=0;
v1=0;
v2=0;
sum=0;
scanf("%d%d", &n, &m);
for(int i=1; i<=n; i++)
for(int j=1; j<=m; j++)
{
cin>>str;
if(str=='*')
{
city[i][j]=++sum;
}
}
for(int i=1; i<=n; i++)
for(int j=1; j<=m; j++)
if(city[i][j])
for(int k=0; k<4; k++)
if(city[ i + dx[k]][j + dy[k]])
MAP[ city[i][j] ] [ city[i + dx[k]] [ j + dy[k]] ] = true;
v1=v2=sum;
for(int i=1; i<=v1; i++)
{
memset(cover, false, sizeof(cover));
if( dfs(i) )
ans++;
}
printf("%d\n", sum-ans/2); //无向二分图:最小路径覆盖数 = "拆点"前原图的顶点数 - 最大匹配数/2
} return 0;
}

POJ 3020:Antenna Placement(无向二分图的最小路径覆盖)的更多相关文章

  1. POJ 3020 Antenna Placement(无向二分图的最小路径覆盖)

    ( ̄▽ ̄)" //无向二分图的最小路径覆盖数=顶点总数-最大匹配数/2(最大匹配数=最小点覆盖数) //这里最大匹配数需要除以2,因为每两个相邻的*连一条边,即<u,v>和< ...

  2. POJ 3020 Antenna Placement 最大匹配

    Antenna Placement Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 6445   Accepted: 3182 ...

  3. poj 3020 Antenna Placement(二分无向图 匈牙利)

    Antenna Placement Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 6438   Accepted: 3176 ...

  4. POJ:3020-Antenna Placement(二分图的最小路径覆盖)

    原题传送:http://poj.org/problem?id=3020 Antenna Placement Time Limit: 1000MS Memory Limit: 65536K Descri ...

  5. Antenna Placement(匈牙利算法 ,最少路径覆盖)

    Antenna Placement Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 6991   Accepted: 3466 ...

  6. 二分图最大匹配(匈牙利算法) POJ 3020 Antenna Placement

    题目传送门 /* 题意:*的点占据后能顺带占据四个方向的一个*,问最少要占据多少个 匈牙利算法:按坐标奇偶性把*分为两个集合,那么除了匹配的其中一方是顺带占据外,其他都要占据 */ #include ...

  7. POJ 3020 Antenna Placement (二分图最小路径覆盖)

    <题目链接> 题目大意:一个矩形中,有N个城市’*’,现在这n个城市都要覆盖无线,每放置一个基站,至多可以覆盖相邻的两个城市.问至少放置多少个基站才能使得所有的城市都覆盖无线? 解题分析: ...

  8. poj 3020 Antenna Placement (最小路径覆盖)

    链接:poj 3020 题意:一个矩形中,有n个城市'*'.'o'表示空地,如今这n个城市都要覆盖无线,若放置一个基站, 那么它至多能够覆盖本身和相邻的一个城市,求至少放置多少个基站才干使得全部的城市 ...

  9. POJ 1422 Air Raid(二分图匹配最小路径覆盖)

    POJ 1422 Air Raid 题目链接 题意:给定一个有向图,在这个图上的某些点上放伞兵,能够使伞兵能够走到图上全部的点.且每一个点仅仅被一个伞兵走一次.问至少放多少伞兵 思路:二分图的最小路径 ...

随机推荐

  1. RDD缓存

    RDD的缓存 Spark速度非常快的原因之一,就是在不同操作中可以在内存中持久化或缓存数据集.当持久化某个RDD后,每一个节点都将把计算的分片结果保存在内存中,并在对此RDD或衍生出的RDD进行的其他 ...

  2. 【问题解决方案】GitHub的md中使用库中图片

    参考链接: 在GitHub中使用图片功能 步骤: 在github上的仓库建立一个存放图片的文件夹,文件夹名字随意.如:image 将需要在插入到文本中的图片,push到image文件夹中. 然后打开g ...

  3. redis限流器的设计

    1.定义注解 import java.lang.annotation.Documented; import java.lang.annotation.ElementType; import java. ...

  4. smbstatus - 报告当前 samba 的联接状态

    总览 smbstatus [-b] [-d] [-L] [-p] [-S] [-s configuration file] [-u username] 描述 此程序是 samba 套件的一部分. sm ...

  5. centos(6-7)安装openldap

    前言 参考资料: http://yhz61010.iteye.com/blog/2352672 https://www.cnblogs.com/lemon-le/p/6266921.html 实验环境 ...

  6. Linux自用指令——2019年10月23日

    1.ls ls命令是列出目录内容(List Directory Contents)的意思.运行它就是列出文件夹里的内容,可能是文件也可能是文件夹. ls -a 列出目录所有文件,包含以.开始的隐藏文件 ...

  7. webpack.config.js配置入口出口文件

    目录结构: 新建webpack.config.js配置文件 const path = require('path') //导出 path是node内置的包 通过npm init初始化得到package ...

  8. UiAutomator和Appium之间的区别2

    UiAutomator和Appium之间的区别和联系 联系: 在Android端,appium基于WebDriver协议,利用Bootstrap.jar,最后通过调⽤用UiAutomator的命令,实 ...

  9. 一次OOM测试并分析

    堆dump文件分析 Java代码: public class HeapTest2 { static class OOMObject { private byte[] arrs = new byte[6 ...

  10. Optional常用操作

    1. 常见操作 @Test public void test1() { F f = new F(); // of(非null对象) Optional<F> fOptional = Opti ...