题目链接

题意 : 给出 N 种纸币、并且给出面值、每种纸币的数量可以任选、问你得出来的数在 k 进制下、末尾位的数有多少种可能、输出具体方案

分析 :

纸币任意选择组成的和

可以用一个一次多项式来表示

A1*B1 + A2*B2 + A3*B3 + ... + An*Bn ( A 为面值、B 为数量 )

根据裴蜀定理、这个一次多项式的结果集应当是 gcd( A1、A2 .... An ) 的倍数

然后考虑怎么得到每个数 k 进制下的最后一位数

实际上你考虑一下十进制是怎么转化为 k 进制的

就能够分析出、只要将这个十进制模以 k 就能得到

那么也就是说要求 ( A1*B1 + A2*B2 + A3*B3 + ... + An*Bn ) % k 的结果集

模可以转化为减法 故有 A1*B1 + A2*B2 + A3*B3 + ... + An*Bn - y*k

那么结果集就应当是 gcd( A1、A2 .... An 、k ) 的倍数

那么总数就有 k / gcd( A1、A2 .... An 、k )

具体的方案就直接枚举 gcd 的倍数就行了、上界为 k

#include<bits/stdc++.h>
using namespace std;

int main(void)
{
    int n, k;
    cin>>n>>k;

    ;
    ; i<=n; i++){
        int tmp;
        cin>>tmp;
        ) GCD = tmp;
        else GCD = __gcd(GCD, tmp);
    }

    GCD = __gcd(GCD, k);

    cout<< k / GCD <<endl;

    ; i<k; i+=GCD) cout<<i<<" "; cout<<endl;

    ;
}

Codeforces #499 E Border ( 裴蜀定理 )的更多相关文章

  1. codeforces 1260C. Infinite Fence (数学or裴蜀定理)

    只需要验证小间隔在大间隔之间有没有连续的k个 设小间隔为a,大间隔为b,那么a在b之间出现的次数在\(\lfloor \frac{b}{a}\rfloor\)或者\(\lfloor \frac{b}{ ...

  2. 【BZOJ-2299】向量 裴蜀定理 + 最大公约数

    2299: [HAOI2011]向量 Time Limit: 10 Sec  Memory Limit: 256 MBSubmit: 1118  Solved: 488[Submit][Status] ...

  3. 【BZOJ-1441】Min 裴蜀定理 + 最大公约数

    1441: Min Time Limit: 5 Sec  Memory Limit: 64 MBSubmit: 471  Solved: 314[Submit][Status][Discuss] De ...

  4. BZOJ-2257 瓶子和燃料 分解因数+数论方面乱搞(裴蜀定理)

    一开始真没想出解法...后来发现那么水.... 2257: [Jsoi2009]瓶子和燃料 Time Limit: 10 Sec Memory Limit: 128 MB Submit: 970 So ...

  5. 【BZOJ】1441: Min(裴蜀定理)

    http://www.lydsy.com/JudgeOnline/problem.php?id=1441 这东西竟然还有个名词叫裴蜀定理................ 裸题不说....<初等数 ...

  6. BZOJ 2257: [Jsoi2009]瓶子和燃料 裴蜀定理

    2257: [Jsoi2009]瓶子和燃料 Time Limit: 1 Sec Memory Limit: 256 MB 题目连接 http://www.lydsy.com/JudgeOnline/p ...

  7. BZOJ 2257: [Jsoi2009]瓶子和燃料【数论:裴蜀定理】

    2257: [Jsoi2009]瓶子和燃料 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 1326  Solved: 815[Submit][Stat ...

  8. 【Wannafly挑战赛22A计数器】【裴蜀定理】

    https://www.nowcoder.com/acm/contest/160/A 题目描述 有一个计数器,计数器的初始值为0,每次操作你可以把计数器的值加上a1,a2,...,an中的任意一个整数 ...

  9. [BZOJ 2299][HAOI 2011]向量 题解(裴蜀定理)

    [BZOJ 2299][HAOI 2011]向量 Description 给你一对数a,b,你可以任意使用(a,b), (a,-b), (-a,b), (-a,-b), (b,a), (b,-a), ...

随机推荐

  1. [转帖]国产CPU性能最全盘点 宜良性竞争优胜劣汰

    国产CPU性能最全盘点 宜良性竞争优胜劣汰 电子工程专辑的网站内容 其实里面说的不尽全面 比如龙芯和申威就放到一块了 一个是 MIPS 一个是Alpha 明显不一样的东西 x86的应该都不行 而且. ...

  2. C++游戏服务器编程笔记 IP详解

    C++游戏服务器编程笔记 IP详解 IP详解 INTERNET的历史 上世纪60年底起源于美国 1992年,Internet上的主机超过了100万台 现在已经是现代文明人的必需品    TCP/IP的 ...

  3. EXKMP模版

    这道题目折腾了我好一会啊,出于尊重我要先放我们师兄的博客 1178: [视频]EXKMP模版:最长共同前缀长度 时间限制: 1 Sec  内存限制: 128 MB提交: 180  解决: 123[提交 ...

  4. 关于解决SpringDataJpa框架实体类表字段创建顺序与数据库表字段展示顺序不一致的问题

    今天在公司的项目开发中,遇到一个问题: 后端对象实体类中写入字段顺序与数据库中的存储顺序不一致. 仔细观察到数据库中的表字段的排序方式是按照拼音字母的顺序abcdef......来存储的 而我的实体类 ...

  5. Python新式类与经典类(旧式类)的区别

    看写poc的时候看到的,思考了半天,现在解决了 转载自http://blog.csdn.net/zimou5581/article/details/53053775 Python中类分两种:旧式类和新 ...

  6. Hadoop伪分布式重启正确流程

    既然是伪分布式,那就不可避免的设计到重启Hadoop服务或者重启Hadoop服务器的情况,正确的停止和重启是很有必要的. 首先是Hadoop服务的停止,使用 ./sbin/stop-all.sh脚本来 ...

  7. MyCat配置简述以及mycat全局ID

    Mycat可以直接下载解压,简单配置后可以使用,主要配置项如下: 1. log4j2.xml:配置MyCat日志,包括位置,格式,单个文件大小 2. rule.xml: 配置分片规则 3. schem ...

  8. 借助Charles来测试移动端-下篇

    本篇是借助Charles来测试移动端的下半篇.(上篇任意门点我) 上次说到可以借助Charles来抓移动端的网络请求,接下来,我们来看一下怎么通过Charles来模拟返回,还是以网页版豆瓣为例. 先找 ...

  9. 【bzoj 4046 加强版】Pork barrel

    刚考完以为是神仙题--后来发现好像挺蠢的-- QwQ 题意 给你一张 \(n\) 个点 \(m\) 条边的无向图(不一定连通),有 \(q\) 组询问,每组询问给你 \(2\) 个正整数 \(l,h\ ...

  10. Java事务(转载)

    Java事务的类型有三种:JDBC事务.JTA(Java Transaction API)事务.容器事务. 1.JDBC事务 JDBC 事务是用 Connection 对象控制的.JDBC Conne ...