https://blog.csdn.net/real_myth/article/details/51824193

池化层的作用:

感受野变化。。。??

1*1卷积核的作用

1. 实现跨通道的交互和信息整合

2. 进行卷积核通道数的降维和升维,减少网络参数

https://www.zhihu.com/question/56024942

作者:zhwhong
链接:https://www.zhihu.com/question/56024942/answer/154846007
来源:知乎
著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。

1. 实现跨通道的交互和信息整合

1×1的卷积层(可能)引起人们的重视是在NIN的结构中,论文中林敏师兄的想法是利用MLP代替传统的线性卷积核,从而提高网络的表达能力。文中同时利用了跨通道pooling的角度解释,认为文中提出的MLP其实等价于在传统卷积核后面接cccp层,从而实现多个feature map的线性组合,实现跨通道的信息整合。而cccp层是等价于1×1卷积的,因此细看NIN的caffe实现,就是在每个传统卷积层后面接了两个cccp层(其实就是接了两个1×1的卷积层)。

2. 进行卷积核通道数的降维和升维,减少网络参数

进行降维和升维引起人们重视的(可能)是在GoogLeNet里。对于每一个Inception模块(如下图),原始模块是左图,右图中是加入了1×1卷积进行降维的。虽然左图的卷积核都比较小,但是当输入和输出的通道数很大时,乘起来也会使得卷积核参数变的很大,而右图加入1×1卷积后可以降低输入的通道数,卷积核参数、运算复杂度也就跟着降下来了。以GoogLeNet的3a模块为例,输入的feature map是28×28×192,3a模块中1×1卷积通道为64,3×3卷积通道为128,5×5卷积通道为32,如果是左图结构,那么卷积核参数为1×1×192×64+3×3×192×128+5×5×192×32,而右图对3×3和5×5卷积层前分别加入了通道数为96和16的1×1卷积层,这样卷积核参数就变成了1×1×192×64+(1×1×192×96+3×3×96×128)+(1×1×192×16+5×5×16×32),参数大约减少到原来的三分之一。同时在并行pooling层后面加入1×1卷积层后也可以降低输出的feature map数量,左图pooling后feature map是不变的,再加卷积层得到的feature map,会使输出的feature map扩大到416,如果每个模块都这样,网络的输出会越来越大。而右图在pooling后面加了通道为32的1×1卷积,使得输出的feature map数降到了256。GoogLeNet利用1×1的卷积降维后,得到了更为紧凑的网络结构,虽然总共有22层,但是参数数量却只是8层的AlexNet的十二分之一(当然也有很大一部分原因是去掉了全连接层)。

CNN简略总结的更多相关文章

  1. [CNN] Face Detection

    即将进入涉及大量数学知识的阶段,先读下“别人家”的博文放松一下. 读罢该文,基本能了解面部识别领域的整体状况. 后生可畏. 结尾的Google Facenet中的2亿数据集,仿佛隐约听到:“你们都玩儿 ...

  2. Deep learning:五十一(CNN的反向求导及练习)

    前言: CNN作为DL中最成功的模型之一,有必要对其更进一步研究它.虽然在前面的博文Stacked CNN简单介绍中有大概介绍过CNN的使用,不过那是有个前提的:CNN中的参数必须已提前学习好.而本文 ...

  3. 卷积神经网络(CNN)学习算法之----基于LeNet网络的中文验证码识别

    由于公司需要进行了中文验证码的图片识别开发,最近一段时间刚忙完上线,好不容易闲下来就继上篇<基于Windows10 x64+visual Studio2013+Python2.7.12环境下的C ...

  4. 如何用卷积神经网络CNN识别手写数字集?

    前几天用CNN识别手写数字集,后来看到kaggle上有一个比赛是识别手写数字集的,已经进行了一年多了,目前有1179个有效提交,最高的是100%,我做了一下,用keras做的,一开始用最简单的MLP, ...

  5. CNN车型分类总结

    最近在做一个CNN车型分类的任务,首先先简要介绍一下这个任务. 总共30个类,训练集图片为车型图片,类似监控拍摄的车型图片,训练集测试集安6:4分,训练集有22302份数据,测试集有14893份数据. ...

  6. CNN初步-2

    Pooling 为了解决convolved之后输出维度太大的问题 在convolved的特征基础上采用的不是相交的区域处理     http://www.wildml.com/2015/11/unde ...

  7. 基于孪生卷积网络(Siamese CNN)和短时约束度量联合学习的tracklet association方法

    基于孪生卷积网络(Siamese CNN)和短时约束度量联合学习的tracklet association方法 Siamese CNN Temporally Constrained Metrics T ...

  8. dede 简略标题调用标签

    一.简略标题调用标签: 1.{dede:field.shorttitle/} 不可以在{dede:arclist}标签中套用,一般放在网页titile处; 2.[field:shorttitle/] ...

  9. [Keras] mnist with cnn

    典型的卷积神经网络. Keras傻瓜式读取数据:自动下载,自动解压,自动加载. # X_train: array([[[[ 0., 0., 0., ..., 0., 0., 0.], [ 0., 0. ...

随机推荐

  1. webdriervAPI(By声明定位方法)

    from  selenium  import  webdriver from  selenium.webdriver.common.by  import  By 导入By方法 driver  =  w ...

  2. python 爬虫 基于requests模块发起ajax的get请求

    基于requests模块发起ajax的get请求 需求:爬取豆瓣电影分类排行榜 https://movie.douban.com/中的电影详情数据 用抓包工具捉取 使用ajax加载页面的请求 鼠标往下 ...

  3. python-bioInfo-codes-2

    1. _tkinter.TclError: no display name and no $DISPLAY environment variable 解决方案: import matplotlibma ...

  4. JavaScript刷新事件

    1, Location reload() 方法 2,

  5. 下载安装npm和cnpm

    下载安装npm http://nodejs.cn/download/ 下载安装cnpm 完成npm的安装后,再安装cnpm https://npm.taobao.org/ 切换源为 taobao 源 ...

  6. 04: gitlab安装与使用

    1.1 gitlab安装(192.168.56.12中安装) 1.GitLab是什么? 1. GitLab实现一个自托管的Git项目仓库,可通过Web界面进行访问公开的或者私人项目. 2. GitLa ...

  7. 前端-CSS-更改标签样式-长宽字体-背景-边框-显示方式-定位-透明度-扩展点-02

    目录 控制标签元素样式 长宽属性.字体属性.文本对齐.文本装饰.首行缩进 背景属性.边框属性.圆角 display 显示方式 盒子模型 margin.padding... float浮动 overfl ...

  8. A Horrible Poem (字符串hash+数论)

    # 10038. 「一本通 2.1 练习 4」A Horrible Poem [题目描述] 给出一个由小写英文字母组成的字符串 $S$,再给出 $q$ 个询问,要求回答 $S$ 某个子串的最短循环节. ...

  9. Java重要类之LinkedList

    一.ArrayList与LinkedList 基本概念:List是一个接口,Arraylist和LinkedList是它的两个实现类,只是实现的方式不一样.我在“单链表java实现”一文中已经对单链表 ...

  10. Java基础(那些习以为常缺不知道原理的地方)

    一.基础 1.1 正确的使用equals方法 Object的equals方法容易抛空指针异常,应使用常量或确定有值的对象来调用 equals.如下代码 // 不能使用一个值为null的引用类型变量来调 ...