CNN简略总结
https://blog.csdn.net/real_myth/article/details/51824193
池化层的作用:
感受野变化。。。??
1*1卷积核的作用
1. 实现跨通道的交互和信息整合
2. 进行卷积核通道数的降维和升维,减少网络参数
https://www.zhihu.com/question/56024942
作者:zhwhong
链接:https://www.zhihu.com/question/56024942/answer/154846007
来源:知乎
著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。
1. 实现跨通道的交互和信息整合
1×1的卷积层(可能)引起人们的重视是在NIN的结构中,论文中林敏师兄的想法是利用MLP代替传统的线性卷积核,从而提高网络的表达能力。文中同时利用了跨通道pooling的角度解释,认为文中提出的MLP其实等价于在传统卷积核后面接cccp层,从而实现多个feature map的线性组合,实现跨通道的信息整合。而cccp层是等价于1×1卷积的,因此细看NIN的caffe实现,就是在每个传统卷积层后面接了两个cccp层(其实就是接了两个1×1的卷积层)。
2. 进行卷积核通道数的降维和升维,减少网络参数
进行降维和升维引起人们重视的(可能)是在GoogLeNet里。对于每一个Inception模块(如下图),原始模块是左图,右图中是加入了1×1卷积进行降维的。虽然左图的卷积核都比较小,但是当输入和输出的通道数很大时,乘起来也会使得卷积核参数变的很大,而右图加入1×1卷积后可以降低输入的通道数,卷积核参数、运算复杂度也就跟着降下来了。以GoogLeNet的3a模块为例,输入的feature map是28×28×192,3a模块中1×1卷积通道为64,3×3卷积通道为128,5×5卷积通道为32,如果是左图结构,那么卷积核参数为1×1×192×64+3×3×192×128+5×5×192×32,而右图对3×3和5×5卷积层前分别加入了通道数为96和16的1×1卷积层,这样卷积核参数就变成了1×1×192×64+(1×1×192×96+3×3×96×128)+(1×1×192×16+5×5×16×32),参数大约减少到原来的三分之一。同时在并行pooling层后面加入1×1卷积层后也可以降低输出的feature map数量,左图pooling后feature map是不变的,再加卷积层得到的feature map,会使输出的feature map扩大到416,如果每个模块都这样,网络的输出会越来越大。而右图在pooling后面加了通道为32的1×1卷积,使得输出的feature map数降到了256。GoogLeNet利用1×1的卷积降维后,得到了更为紧凑的网络结构,虽然总共有22层,但是参数数量却只是8层的AlexNet的十二分之一(当然也有很大一部分原因是去掉了全连接层)。
CNN简略总结的更多相关文章
- [CNN] Face Detection
即将进入涉及大量数学知识的阶段,先读下“别人家”的博文放松一下. 读罢该文,基本能了解面部识别领域的整体状况. 后生可畏. 结尾的Google Facenet中的2亿数据集,仿佛隐约听到:“你们都玩儿 ...
- Deep learning:五十一(CNN的反向求导及练习)
前言: CNN作为DL中最成功的模型之一,有必要对其更进一步研究它.虽然在前面的博文Stacked CNN简单介绍中有大概介绍过CNN的使用,不过那是有个前提的:CNN中的参数必须已提前学习好.而本文 ...
- 卷积神经网络(CNN)学习算法之----基于LeNet网络的中文验证码识别
由于公司需要进行了中文验证码的图片识别开发,最近一段时间刚忙完上线,好不容易闲下来就继上篇<基于Windows10 x64+visual Studio2013+Python2.7.12环境下的C ...
- 如何用卷积神经网络CNN识别手写数字集?
前几天用CNN识别手写数字集,后来看到kaggle上有一个比赛是识别手写数字集的,已经进行了一年多了,目前有1179个有效提交,最高的是100%,我做了一下,用keras做的,一开始用最简单的MLP, ...
- CNN车型分类总结
最近在做一个CNN车型分类的任务,首先先简要介绍一下这个任务. 总共30个类,训练集图片为车型图片,类似监控拍摄的车型图片,训练集测试集安6:4分,训练集有22302份数据,测试集有14893份数据. ...
- CNN初步-2
Pooling 为了解决convolved之后输出维度太大的问题 在convolved的特征基础上采用的不是相交的区域处理 http://www.wildml.com/2015/11/unde ...
- 基于孪生卷积网络(Siamese CNN)和短时约束度量联合学习的tracklet association方法
基于孪生卷积网络(Siamese CNN)和短时约束度量联合学习的tracklet association方法 Siamese CNN Temporally Constrained Metrics T ...
- dede 简略标题调用标签
一.简略标题调用标签: 1.{dede:field.shorttitle/} 不可以在{dede:arclist}标签中套用,一般放在网页titile处; 2.[field:shorttitle/] ...
- [Keras] mnist with cnn
典型的卷积神经网络. Keras傻瓜式读取数据:自动下载,自动解压,自动加载. # X_train: array([[[[ 0., 0., 0., ..., 0., 0., 0.], [ 0., 0. ...
随机推荐
- Python3数据插MySQL中文乱码解决方案
1. database要utf8的 CREATE DATABASE spiderTest DEFAULT CHARACTER SET utf8 COLLATE utf8_general_ci; 2. ...
- PTA(Basic Level)1060.爱丁顿数
英国天文学家爱丁顿很喜欢骑车.据说他为了炫耀自己的骑车功力,还定义了一个"爱丁顿数" E ,即满足有 E 天骑车超过 E 英里的最大整数 E.据说爱丁顿自己的 E 等于87. 现给 ...
- redis 学习(4)-- 哈希类型
redis 学习(4)-- 哈希类型 介绍 redis 中哈希键值结构: 可以看出:哈希键值包括 key,field,value 这三部分,即键,属性,值这三部分.可以这样来表示: key, (fie ...
- b/s和c/s
一.B/S结构 B是英文单词“Browser”的首字母,即浏览器的意思:S是英文单词“Server”的首字母,即服务器的意思.B/S就是“Browser/Server”的缩写,即“浏览器/服务器”模式 ...
- Altium Designer 只导出PCB元器件及标号的PDF文件的方法
版权声明:本文为博主原创文章,遵循CC 4.0 BY-SA 版权协议,转载请附上原文出处链接及本声明. 作者:struct_mooc 博客地址:https://www.cnblogs.com/stru ...
- 多线程编程-- part 7 CountDownLatch
CountDownLatch简介 CountDownLatch是通过“共享锁”实现的.在创建CountDownLatch中时,会传递一个int类型参数count,该参数是“锁计数器”的初始状态,表示该 ...
- redis性能指标
1.当内存使用达到设置的最大阀值时,需要选择一种key的回收策略,可在Redis.conf配置文件中修改“maxmemory-policy”属性值. 若是Redis数据集中的key都设置了过期时间,那 ...
- Linux排查磁盘空间顺序解决空间不足问题
1 先查看整个磁盘的情况 df -h 查看整台服务器的硬盘使用情况 cd / 进入根目录 du -s ...
- MixNet学习笔记
最近,谷歌使用了AutoML,推出了一种新网络:MixNet,其论文为<MixNet: Mixed Depthwise Convolutional Kernels>.其主要创新点是,研究不 ...
- 谷歌对Intel 10nm进度不满
Intel 在 10nm 处理器上的节奏可谓是“龟速”,一拖三年,且目前大规模发货的 10nm Ice Lake 处理器仅仅是移动平台低电压,桌面要到明年. 表面波澜不惊,实际上却暗流涌动. 首先是 ...