传送门

##解题思路
  首先将$a$,$b$排序,然后可以算出$t(i)$,表示$a(i)$比多少个$b(i)$大,根据容斥套路,设$f(k)$表示恰好有$k$个$a(i)$比$b(i)$大,$g(k)$表示至少有$k$个,那么$g(k)=\sum\limits_^n\dbinomf(i)$。发现这是一个二项式反演的形式,现在的问题变为如何求$g(k)$,发现可以强制选$k$组,其余的任意搭配,强制选$k$组就可以$dp$了。设$dp(i)(j)$表示前$i$个数,选了$j$个的方案数,因为$a$数组已经排好序,所以$dp(i)(j)=dp(i-1)(j)+dp(i-1)(j-1)max(0,t(i)-j+1)$,然后$g(k)=dp(n)(k)(n-k)!$

##代码

#include<iostream>
#include<cstdio>
#include<cstring>
#include<cmath>
#include<cstdlib>
#include<algorithm> using namespace std;
const int N=2005;
const int MOD=1e9+9;
typedef long long LL; inline int rd(){
int x=0,f=1;char ch=getchar();
while(!isdigit(ch)) f=ch=='-'?0:1,ch=getchar();
while(isdigit(ch)) x=(x<<1)+(x<<3)+ch-'0',ch=getchar();
return f?x:-x;
}
inline int max(int x,int y){return x>y?x:y;} int n,k,a[N],b[N],t[N],f[N][N],fac[N],inv[N],ans; inline int fast_pow(int x,int y){
int ret=1;
for(;y;y>>=1){
if(y&1) ret=(LL)ret*x%MOD;
x=(LL)x*x%MOD;
}
return ret;
} inline int C(int x,int y){
return (LL)fac[x]*inv[y]%MOD*inv[x-y]%MOD;
} int main(){
n=rd(),k=rd();if((n+k)&1) return puts("0"),0;
k=(n+k)>>1;int now=1;fac[0]=1;
for(int i=1;i<=n;i++) a[i]=rd();
for(int i=1;i<=n;i++) b[i]=rd();
sort(a+1,a+1+n);sort(b+1,b+1+n);
for(int i=1;i<=n;i++){
t[i]=t[i-1];
while(a[i]>b[now] && now<=n) t[i]++,now++;
}
f[0][0]=1;
for(int i=1;i<=n;i++){
f[i][0]=1;
for(int j=1;j<=i;j++)
f[i][j]=(f[i-1][j]+(LL)f[i-1][j-1]*(max(0,t[i]-j+1))%MOD)%MOD;
}
for(int i=1;i<=n;i++) fac[i]=(LL)fac[i-1]*i%MOD;
inv[n]=fast_pow(fac[n],MOD-2);
for(int i=n-1;~i;i--) inv[i]=(LL)inv[i+1]*(i+1)%MOD;
for(int i=k;i<=n;i++){
if((i-k)&1) ans=(ans+(MOD-(LL)C(i,k)*f[n][i]%MOD*fac[n-i]%MOD))%MOD;
else ans=(ans+(LL)C(i,k)*f[n][i]%MOD*fac[n-i]%MOD)%MOD;
}
printf("%d\n",ans);
return 0;
}

BZOJ 3622: 已经没有什么好害怕的了(二项式反演)的更多相关文章

  1. bzoj 3622 已经没有什么好害怕的了——二项式反演

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=3622 令 f[i] 表示钦定 i 对 a[ ]>b[ ] 的关系的方案数:g[i] 表 ...

  2. luoguP4859 已经没有什么好害怕的了(二项式反演)

    luoguP4859 已经没有什么好害怕的了(二项式反演) 祭奠天国的bzoj. luogu 题解时间 先特判 $ n - k $ 为奇数无解. 为了方便下记 $ m = ( n + k ) / 2 ...

  3. BZOJ 3622: 已经没有什么好害怕的了 [容斥原理 DP]

    3622: 已经没有什么好害怕的了 题意:和我签订契约,成为魔法少女吧 真·题意:零食魔女夏洛特的结界里有糖果a和药片b各n个,两两配对,a>b的配对比b>a的配对多k个学姐就可能获胜,求 ...

  4. bzoj 3622 已经没有什么好害怕的了 类似容斥,dp

    3622: 已经没有什么好害怕的了 Time Limit: 10 Sec  Memory Limit: 256 MBSubmit: 1213  Solved: 576[Submit][Status][ ...

  5. BZOJ 3622 : 已经没有什么好害怕的了(dp + 广义容斥原理)

    今天没听懂 h10 的讲课 但已经没有什么好害怕的了 题意 给你两个序列 \(a,b\) 每个序列共 \(n\) 个数 , 数之间两两不同 问 \(a\) 与 \(b\) 之间有多少配对方案 使得 \ ...

  6. BZOJ3622 已经没有什么好害怕的了 二项式反演+DP

    题目传送门 https://lydsy.com/JudgeOnline/problem.php?id=3622 题解 首先显然如果 \(n - k\) 为奇数那么就是无解.否则的话,"糖果& ...

  7. [BZOJ 3622]已经没有什么好害怕的了

    世萌萌王都拿到了,已经没有什么好害怕的了——    (作死) 笑看哪里都有学姐,真是不知说什么好喵~ 话说此题是不是输 0 能骗不少分啊,不然若学姐赢了,那么有头的学姐还能叫学姐吗?  (作大死) 这 ...

  8. ●BZOJ 3622 已经没有什么好害怕的了

    题链: http://www.lydsy.com/JudgeOnline/problem.php?id=3622 题解: 容斥,dp1).可以求出需要多少对"糖果>药片"(K ...

  9. 解题:BZOJ 3622 已经没有什么好害怕的了·

    题面 用来学习二项式反演的题目 大于等于/小于等于 反演出 恰好等于 设前者为f(n),后者为g(n),则有$f(n)=\sum\limits_{i=0}^nC_n^ig(n)<->g(n ...

随机推荐

  1. JS中的作用域及闭包

    1.JS中的作用域 在 es6 出现之前JS中只有全局作用域和函数作用域,没有块级作用域,即 JS 在函数体内有自己的作用域,但是如果不是在函数体的话就全部都是全局作用域.比如在 if.for 等有 ...

  2. [bzoj3462]DZY Loves Math II (美妙数学+背包dp)

    Description Input 第一行,两个正整数 S 和 q,q 表示询问数量. 接下来 q 行,每行一个正整数 n. Output 输出共 q 行,分别为每个询问的答案. Sample Inp ...

  3. English-Difference between original and source

    最近跟网页翻译怼上了,在给翻译前的页面起名是纠结于使用 original page 还是 source page,就查了一下 original 和 source 的区别. original: n. 原 ...

  4. 测开之路三十五:css引入

    CSS是一种定义样式结构,如字体.颜色.位置等的语言,被用于描述网页上的信息格式化和现实的方式.CSS样式可以直接存储于HTML网页或者单独的样式单文件.无论哪一种方式,样式单包含将样式应用到指定类型 ...

  5. cabal替代脚本

    由于网络原因,直接使用cabal update不成功,只能自己写脚本直接从网上拖包下来,自己安装. 但是这样做的缺点是需要手动处理dependency,当然,也可以把脚本写的复杂些,自动来处理depe ...

  6. The Stream of Corning 2( 权值线段树/(树状数组+二分) )

    题意: 有两种操作:1.在[l,r]上插入一条值为val的线段 2.问p位置上值第k小的线段的值(是否存在) 特别的,询问的时候l和p合起来是一个递增序列 1<=l,r<=1e9:1< ...

  7. 【Nacos】数据一致性

    转自:https://blog.csdn.net/liyanan21/article/details/89320872 目录 一.Raft算法 二.Nacos中Raft部分源码 init() 1. 获 ...

  8. 金额格式化,例子:fmoney("12345.675910", 3),返回12,345.676

    /** * 金额格式化 * 例子:fmoney("12345.675910", 3),返回12,345.676 * @data 备注lhh 2016-09-18 */ functi ...

  9. python面试如何以相反顺序展示一个文件的内容?

    >>> for line in reversed(list(open('Today.txt'))): print(line.rstrip())containeritertools D ...

  10. PHP 与Python 读取大文件的区别

    php读取大文件的方法   <?php function readFile($file) { # 打开文件 $handle = fopen($file, 'rb'); while (feof($ ...