AcWing 209. 装备购买 (高斯消元线性空间)打卡
脸哥最近在玩一款神奇的游戏,这个游戏里有 n 件装备,每件装备有 m 个属性,用向量z[i]=(ai,1,ai,2,..,ai,m)z[i]=(ai,1,ai,2,..,ai,m) 表示,每个装备需要花费 cici。
现在脸哥想买一些装备,但是脸哥很穷,所以总是盘算着怎样才能花尽量少的钱买尽量多的装备。
对于脸哥来说,如果一件装备的属性能用购买的其他装备组合出(也就是说脸哥可以利用手上的这些装备组合出这件装备的效果),那么这件装备就没有买的必要了。
严格的定义是,如果脸哥买了 z[i1],z[i2],…,z[ip]z[i1],z[i2],…,z[ip]这 p 件装备,并且不存在实数 b1,b2,…,bpb1,b2,…,bp 使得z[k]=b1z[i1]+b2z[i2]+…+bpz[ip]z[k]=b1z[i1]+b2z[i2]+…+bpz[ip],那么脸哥就会买z[k]z[k],否则 z[k]z[k]对脸哥就是无用的了,自然不必购买。
脸哥想要在买下最多数量的装备的情况下花最少的钱,你能帮他算一下吗?
输入格式
第一行包含两个整数 n和m。
接下来 n 行,每行 m 个数,其中第 i 行描述装备 i 的各项属性值。
接下来一行 n 个数,其中第i个数表示购买第 i 件装备的花费cici。
输出格式
输出占一行,包含两个整数,第一个整数表示能够购买的最多装备数量,第二个整数表示在购买最多数量的装备的情况下的最小花费。
数据范围
1≤n,m≤5001≤n,m≤500,
0≤ai,j≤10000≤ai,j≤1000
输入样例:
3 3
1 2 3
3 4 5
2 3 4
1 1 2
输出样例:
2 2题意:给出n个向量,每个向量有m个属性,每个向量有个价值,我们现在求买最多的向量,但是花最少的钱,当然有个要求,如果其中一些变量能够由其他的拼凑出来而且价格比这低,那么就不用多次一举买这些变量
,满足这要求求最优的答案 思路:
这里讲一个概念 线性空间
其中有很多变量,如果有些变量可以被其他变量凑出来,通过向量间的加法,和数量积之和得来,那么就是线性相关,否则就是线性无关,
求最大的线性无关组,我们可以用高斯消元,如果一行都被化简成0,说明这个可以被其他凑出来,那么就不需要买,也就是矩阵的秩
这里还有个问题就是要用最少的钱,我们只需要找最大元的时候找出满足要求且最低的价格的那一个即可
#include<bits/stdc++.h>
#define maxn 100005
#define mod 1000000007
#define eps 1e-8
using namespace std;
typedef long long ll;
ll n,m;
long double a[][];
long double c[];
int main(){
cin>>n>>m;
for(int i=;i<=n;i++){
for(int j=;j<=m;j++){
double temp;
cin>>temp;
a[i][j]=temp;
}
}
for(int i=;i<=n;i++){
double temp;
cin>>temp;
c[i]=temp;
}
double sum=;
ll num=;
for(int i=;i<=n;i++){
int flag=;
for(int j=i;j<=n;j++){
if(fabs(a[j][i])>eps){
if(flag==||c[j]<c[flag])
{
flag=j;
}
}
}
/*if(fabs(a[i][i])<eps){
num=i-1;
break;
}*/
if(flag==) continue;
num++;
for(int k=;k<=m;k++){
swap(a[i][k],a[flag][k]);
}
swap(c[i],c[flag]);
sum+=c[i];
for(int j=;j<=n;j++){
if(i==j||fabs(a[j][i])<eps) continue;
long double state=a[j][i]/a[i][i];
for(int k=;k<=m;k++){
a[j][k]-=a[i][k]*state;
}
}
}
cout<<num<<" "<<sum;
} /*
3 3
1 2 3
3 4 5
2 3 4
1 1 2
*/
AcWing 209. 装备购买 (高斯消元线性空间)打卡的更多相关文章
- BZOJ 4004 JLOI2015 装备购买 高斯消元+线性基
题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=4004 Description 脸哥最近在玩一款神奇的游戏,这个游戏里有 n 件装备,每件装 ...
- BZOJ 4004: [JLOI2015]装备购买 [高斯消元同余 线性基]
和前两(一)题一样,不过不是异或方程组了..... 然后bzoj的新数据是用来卡精度的吧..... 所有只好在模意义下做啦 只是巨慢无比 #include <iostream> #incl ...
- BZOJ 4004: [JLOI2015]装备购买 高斯消元解线性基
BZOJ严重卡精,要加 $long$ $double$ 才能过. 题意:求权和最小的极大线性无关组. 之前那个方法解的线性基都是基于二进制拆位的,这次不行,现在要求一个适用范围更广的方法. 考虑贪心 ...
- AcWing 207. 球形空间产生器 (高斯消元)打卡
有一个球形空间产生器能够在n维空间中产生一个坚硬的球体. 现在,你被困在了这个n维球体中,你只知道球面上n+1个点的坐标,你需要以最快的速度确定这个n维球体的球心坐标,以便于摧毁这个球形空间产生器. ...
- AcWing 227. 小部件厂 (高斯消元)打卡
题目:https://www.acwing.com/problem/content/description/229/ 题意:有很多个零件,每个零件的生产时间都在3-9天之间,现在只知道每个工人的生产部 ...
- HDU2449 Gauss Elimination 高斯消元 高精度 (C++ AC代码)
原文链接https://www.cnblogs.com/zhouzhendong/p/HDU2449.html 题目传送门 - HDU2449 题意 高精度高斯消元. 输入 $n$ 个 $n$ 元方程 ...
- [JLOI2015]装备购买 (高斯消元)
[JLOI2015]装备购买 \(solution:\) 首先这道题的题面已经非常清晰的告诉我们这就是线性空间高斯消元的一道题(可以用某些装备来表示另一件装备,这已经不能再明显了),只是这道题要求我们 ...
- 【BZOJ4004】[JLOI2015]装备购买 贪心+高斯消元
[BZOJ4004][JLOI2015]装备购买 Description 脸哥最近在玩一款神奇的游戏,这个游戏里有 n 件装备,每件装备有 m 个属性,用向量zi(aj ,.....,am) 表示 ( ...
- 【bzoj4004】[JLOI2015]装备购买 贪心+高斯消元求线性基
题目描述 脸哥最近在玩一款神奇的游戏,这个游戏里有 n 件装备,每件装备有 m 个属性,用向量zi(aj ,.....,am) 表示 (1 <= i <= n; 1 <= j < ...
随机推荐
- Codeforces 842C--Ilya And The Tree(dfs+树)
原题链接:http://codeforces.com/contest/842/problem/C 题意:一个以1为根节点的树,每个节点有一个值ai,定义美丽度:从根节点到这个节点的路径上所有ai的gc ...
- delphi 异形窗体可半透明
unit xDrawForm; interface uses Windows, Messages, SysUtils, Classes, Controls, Forms, Menus, Graphic ...
- Python中的时间模块和日期模块
Python 日期和时间 Python 程序能用很多方式处理日期和时间,转换日期格式是一个常见的功能. Python 提供了一个 time 和 calendar 模块可以用于格式化日期和时间. 时间间 ...
- 8 November in 614
我开始看心灵鸡汤了-- 每当在书中读及那些卑微的努力,都觉得感动且受震撼.也许每个人在发出属于自己的光芒之前,都经历了无数的煎熬,漫长的黑夜,无尽的孤独,甚至不断的嘲讽和否定,但好在那些踮脚的少年,最 ...
- linux: 如何查看端口占用?
查看端口占用 $: netstat -anp | grep 8888 tcp 0 0 127.0.0.1:8888 0.0.0.0:* LISTEN 13404/python3 tcp 0 1 172 ...
- SQL:REGEXP
作为一个更为复杂的示例,正则表达式B[an]*s匹配下述字符串中的任何一个:Bananas,Baaaaas,Bs,以及以B开始.以s结束.并在其中包含任意数目a或n字符的任何其他字符串. 以下是可用于 ...
- java并发编程笔记(九)——多线程并发最佳实践
java并发编程笔记(九)--多线程并发最佳实践 使用本地变量 使用不可变类 最小化锁的作用域范围 使用线程池Executor,而不是直接new Thread执行 宁可使用同步也不要使用线程的wait ...
- 测开之路三十一:Flask基础之请求与相应
from flask import requestrequest.pathrequest.methodrequest.formrequest.argsrequest.values 一般用form获取p ...
- row_number() over partition by 分组聚合
分组聚合,就是先分组再排序,可以的话顺手标个排名:如果不想分组也可以排名:如果不想分组同时再去重排名也可以 ROW_NUMBER() OVER( [PARTITION BY column_1, col ...
- 小程序UI自动化(一):appium小程序自动化尝试
appium 进行 小程序自动化尝试: 由于工作中进行app自动化用的是appium,故首先尝试用appium进行小程序自动化,以美团小程序为例(python脚本实现) 一.配置基础信息 启动微信ap ...