lg5169 xtq的异或和
根据一些众所周知的结论,我们先跑一棵生成树出来,之后把所有简单环都搞出来,那么\(u\)到\(v\)的路径一定可以由树上的路径和一些简单环拼起来得到
把所有简单环都插到一个线性基里,之后dfs一下线性基求出这些环能拼出的异或和有哪些;
再求一下树上的异或前缀和,\(u\)到\(v\)的路径一定是\(pre_u\bigoplus pre_v\)再异或上一些环构成的
开两个桶,\(A[i]\)表示前缀异或和为\(i\)的点得个数,\(B[i]\)表示\(i\)是否能被线性基凑出来,于是答案就是\(A\times A\times B\),自然是异或卷积,于是大力fwt就好了
代码
#include<bits/stdc++.h>
#define re register
#define LL long long
inline int read() {
char c=getchar();int x=0;while(c<'0'||c>'9') c=getchar();
while(c>='0'&&c<='9') x=(x<<3)+(x<<1)+c-48,c=getchar();return x;
}
const int maxn=1e5+5;
const int len=262144;
struct E{int v,nxt,w;}e[maxn<<1];
int fa[maxn],n,m,q,head[maxn],num,vis[maxn],u[maxn*3],v[maxn*3],va[maxn*3],pre[maxn],M;
int lb[18];LL tax[len],tmp[len];
inline int find(int x) {return fa[x]==x?x:fa[x]=find(fa[x]);}
inline void add(int x,int y,int w) {
e[++num].v=y;e[num].nxt=head[x];head[x]=num;e[num].w=w;
}
void dfs(int x) {
vis[x]=1;
for(re int i=head[x];i;i=e[i].nxt) {
if(vis[e[i].v]) continue;
pre[e[i].v]=pre[x]^e[i].w;
dfs(e[i].v);
}
}
inline void ins(int x) {
for(re int i=17;i>=0;--i)
if(x>>i&1) {
if(!lb[i]) {lb[i]=x;return;}
x^=lb[i];
}
}
void Dfs(int bit,int nw) {
if(bit==-1) {
tmp[nw]=1;return;
}
Dfs(bit-1,nw);
if(lb[bit]) Dfs(bit-1,nw^lb[bit]);
}
inline void Fwt(LL *f,int o) {
for(re int i=2;i<=len;i<<=1)
for(re int ln=i>>1,l=0;l<len;l+=i)
for(re int x=l;x<l+ln;++x) {
LL g=f[x],h=f[x+ln];
f[x]=g+h,f[x+ln]=g-h;
if(o==-1) f[x]>>=1ll,f[x+ln]>>=1ll;
}
}
int main() {
n=read(),m=read(),q=read();
for(re int i=1;i<=n;i++) fa[i]=i;
for(re int x,y,w,i=1;i<=m;i++) {
x=read(),y=read(),w=read();
int xx=find(x),yy=find(y);
if(xx==yy) {u[++M]=x,v[M]=y,va[M]=w;continue;}
fa[xx]=yy,add(x,y,w),add(y,x,w);
}
for(re int i=1;i<=n;i++) if(!vis[i]) dfs(i);
for(re int i=1;i<=M;i++) ins(pre[u[i]]^pre[v[i]]^va[i]);
for(re int i=1;i<=n;i++) tax[pre[i]]++;
Dfs(17,0);Fwt(tax,1),Fwt(tmp,1);
for(re int i=0;i<len;i++) tax[i]=tax[i]*tax[i]*tmp[i];
Fwt(tax,-1);
for(re int x;q;--q) printf("%lld\n",tax[x=read()]);
return 0;
}
lg5169 xtq的异或和的更多相关文章
- [洛谷P5169]xtq的异或和
题目大意:给你一张$n(n\leqslant10^5)$个点$m(m\leqslant3\times10^5)$条边的无向图,每条边有一个权值,$q(q\leqslant2^{18})$次询问,每次询 ...
- P5169 xtq的异或和(FWT+线性基)
传送门 我咋感觉我学啥都是白学-- 首先可以参考一下这一题,从中我们可以知道只要知道两点间任意一条路径以及整个图里所有环的线性基,就可以得知这两个点之间的所有路径的异或和 然而我好像并不会求线性基能张 ...
- Android数据加密之异或加密算法
前言: 这几天被公司临时拉到去做Android IM即时通信协议实现,大致看了下他们定的协议,由于之前没有参与,据说因服务器性能限制,只达成非明文传递,具体原因我不太清楚,不过这里用的加密方式是采用异 ...
- Oracle数据库异机升级
环境: A机:RHEL5.5 + Oracle 10.2.0.4 B机:RHEL5.5 需求: A机10.2.0.4数据库,在B机升级到11.2.0.4,应用最新PSU补丁程序. 目录: 一. 确认是 ...
- [LeetCode] Maximum XOR of Two Numbers in an Array 数组中异或值最大的两个数字
Given a non-empty array of numbers, a0, a1, a2, … , an-1, where 0 ≤ ai < 231. Find the maximum re ...
- [PHP][位转换积累]之异或运算的简单加密应用
异或的符号是^.按位异或运算, 对等长二进制模式按位或二进制数的每一位执行逻辑按位异或操作. 操作的结果是如果某位不同则该位为1, 否则该位为0. xor运算的逆运算是它本身,也就是说两次异或同一个数 ...
- Poj The xor-longest Path 经典题 Trie求n个数中任意两个异或最大值
Time Limit: 2000MS Memory Limit: 65536K Total Submissions: 5646 Accepted: 1226 Description In an ...
- RMAN异机恢复遭遇ORA-01547、ORA-01152、ORA-01110错误案例
测试环境: 操作系统 : Red Hat Enterprise Linux ES release 4 (Nahant Update 4) VMWARE 数据库 : O ...
- RAC异机恢复
RAC异机恢复PDCL到PFCL: PNCL:RAC+ASM ,product env db name:PNCL instance:PDCL1 PDCL2 PFCL:RAC+ASM ,perf ...
随机推荐
- C++中函数调用操作符的重载
1,本博文讲述函数对象问题: 2,客户需求: 1,编写一个函数: 1,函数可以获得斐波那契数列每项的值: 2,每调用一次返回一个值: 3,函数可根据需要重复使用: 4,代码示例: ; i<; i ...
- mysql数值字符串类型的按照数值进行排序
今天遇到一个问题,就是对mysql数值字符串类型进行排序,在默认情况下使用order by 字段名称 desc/asc 进行排序的时候,mysql进行的排序规则是按照ASCII码进行排序的,并不会自动 ...
- static的变量是放在哪里
static的变量都放在数据段,但是初始值若为0则放在BSS节中.而初始值非零则放在数据节中. 数据节和BSS节都属于数据段. 顺便说说对象的存储,可分为三类:静态存储(static storag ...
- centons6升级gcc和glibc版本
一.先升级gcc 这里配置yum源来升级 centos6系列更换阿里yum源 1.首先备份原来的cent os官方yum源 cp /etc/yum.repos.d/CentOS-Base.repo / ...
- k8s之ingress-nginx部署一直提示健康检查10254端口不通过问题就处理
之前部署了一套k8s集群,但是到部署ingress-nginx的时候,一直提示10254端口拒绝不通:如下图. 这是因为我之前装的是docker1.17.默认的驱动是systemd.因为systemd ...
- SpringBoot2.x整合Shiro(一)
一:什么是ACL和RBAC: ACL: Access Control List 访问控制列表 以前盛行的一种权限设计,它的核心在于用户直接和权限挂钩 优点:简单易用,开发便捷 缺点:用户和权限直接挂钩 ...
- elasticsearch relevance score相关性评分的计算
一.多shard场景下relevance score不准确问题 1.问题描述: 多个shard下,如果每个shard包含指定搜索条件的document数量不均匀的情况下,会导致在某个shard上doc ...
- Ansible--01 ansible基础 Ansible-ad- hoc
目录 自动化运维工具-Ansible基础 自动化运维的含义 Ansible 基础及安装 Ansible的架构 Ansible的执行流程 ansible配置文件 ansible Inventory(主机 ...
- 2019CCPC网络赛 HDU6705 - path K短路
题意:给出n个点m条边的有向图,问图上第K短路的长度是多少(这里的路可以经过任何重复点重复边). 解法:解法参考https://blog.csdn.net/Ratina/article/details ...
- 小白jquery横向菜单弹出菜单制作
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/ ...