Description

Input

Output

一般概率题有两种套路:

  1. 满足条件的方案/总方案.
  2. 直接求概率.
第一种方法比较好理解,这道题这么做的话也非常简单.
这里讲一下第二种方法:
易得箱子之间都是环的关系,令 $f[i][j]$ 表示一共开了 $j$ 个箱子并成功打开前 $i$ 个环的概率. 
则 $f[i][j+p]+=\frac{f[i-1][j]\times C^{j}_{sum[i-1]}\times C^{p}_{c_{i}}} {C_{sum[i]}^{j+p}}$        
我们强制给第 $i$ 个环分配 $p$ 个箱子,那么产生这种情况的概率是 $\frac{C^{j}_{sum[i-1]}\times C^{p}_{c_{i}}} {C_{sum[i]}^{j+p}}$,而还需满足前 $i-1$ 个箱子也被打开,那么这个概率就是 $f[i-1][j]$,这两个相乘就是发生当前局面的概率. 
#include <cstdio>
#include <cmath>
#include <algorithm>
#include <cstring>
#define setIO(s) freopen(s".in","r",stdin)
#define N 307
using namespace std;
double fac[N],f[N][N];
bool vis[N];
int cir[N],sum[N],a[N];
inline void calc()
{
int n,k,i,j,tot=0,p;
scanf("%d%d",&n,&k);
memset(vis,0,sizeof(vis));
memset(f,0,sizeof(f));
for(i=1;i<=n;++i) scanf("%d",&a[i]), fac[i]=fac[i-1]+log(i);
for(i=1;i<=n;++i)
{
if(vis[i]) continue;
cir[++tot]=0;
for(j=i;!vis[j];j=a[j]) vis[j]=1,cir[tot]++;
}
sum[0]=0,f[0][0]=1.0000;
for(i=1;i<=tot;++i) sum[i]=sum[i-1]+cir[i];
for(i=1;i<=tot;++i)
for(j=i-1;j<k&&j<=sum[i-1];++j)
for(p=1;p<=cir[i]&&j+p<=k;++p)
{
double tmp=exp(fac[sum[i-1]]+fac[cir[i]]+fac[j+p]+fac[sum[i]-j-p]-fac[j]-fac[sum[i-1]-j]-fac[p]-fac[cir[i]-p]-fac[sum[i]]);
f[i][j+p]+=f[i-1][j]*tmp;
}
printf("%.9f\n",f[tot][k]);
}
int main()
{
// setIO("input");
int T,i,j;
scanf("%d",&T);
for(i=1;i<=T;++i) calc();
return 0;
}

  

BZOJ 5004: 开锁魔法II 期望 + 组合的更多相关文章

  1. BZOJ 5004: 开锁魔法II

    比较显然 #include<cstdio> #include<algorithm> #include<cstring> using namespace std; i ...

  2. bzoj5003: 与链 5004: 开锁魔法II 5005:乒乓游戏

    www.lydsy.com/JudgeOnline/upload/task.pdf 第一题题意可以转为选一个长度k的序列,每一项二进制的1的位置被下一项包含,且总和为1,考虑每个二进制位的出现位置,可 ...

  3. 【bzoj5004】开锁魔法II 组合数学+概率dp

    题目描述 有 $n$ 个箱子,每个箱子里有且仅有一把钥匙,每个箱子有且仅有一把钥匙可以将其打开.现在随机打开 $m$ 个箱子,求能够将所有箱子打开的概率. 题解 组合数学+概率dp 题目约定了每个点的 ...

  4. hrb——开锁魔法I——————【规律】

    解题思路:从1到n的倒数之和. #include<stdio.h> #include<string.h> #include<algorithm> using nam ...

  5. hihocoder1075【开锁魔法】

    hihocoder1075[开锁魔法] 题意是给你一个 \(1-n\) 的置换,求选 \(k\) 个可以遍历所有点的概率. 题目可以换个模型:有 \(n\) 个球,有 \(cnt\) 种不同的颜色,求 ...

  6. HihoCoder 1075 开锁魔法III(概率DP+组合)

    描述 一日,崔克茜来到小马镇表演魔法. 其中有一个节目是开锁咒:舞台上有 n 个盒子,每个盒子中有一把钥匙,对于每个盒子而言有且仅有一把钥匙能打开它.初始时,崔克茜将会随机地选择 k 个盒子用魔法将它 ...

  7. hihocoder 1075 : 开锁魔法III

    描述 一日,崔克茜来到小马镇表演魔法. 其中有一个节目是开锁咒:舞台上有 n 个盒子,每个盒子中有一把钥匙,对于每个盒子而言有且仅有一把钥匙能打开它.初始时,崔克茜将会随机地选择 k 个盒子用魔法将它 ...

  8. #1075 : 开锁魔法III

    描述 一日,崔克茜来到小马镇表演魔法. 其中有一个节目是开锁咒:舞台上有 n 个盒子,每个盒子中有一把钥匙,对于每个盒子而言有且仅有一把钥匙能打开它.初始时,崔克茜将会随机地选择 k 个盒子用魔法将它 ...

  9. Hiho #1075: 开锁魔法III

    Problem Statement 描述 一日,崔克茜来到小马镇表演魔法. 其中有一个节目是开锁咒:舞台上有 n 个盒子,每个盒子中有一把钥匙,对于每个盒子而言有且仅有一把钥匙能打开它.初始时,崔克茜 ...

随机推荐

  1. CodeSmith 找不到请求的 .Net Framework Data Provider

    连接数据库时候报标题的错误解决方案 安装mysql-connector-net-6.8.7.msi,下载地址:http://dev.mysql.com/downloads/connector/net/ ...

  2. javascript number与isNan

    number 与 isnan Number:表示整数和浮点数 NaN:即非数值(not a Number)是 一个特殊的数值.是Number类型的一种. 说明:1.任何涉及NaN的操作(例如Nan/1 ...

  3. ll按时间排序和查看目录下文件数

    查询文件并以降序排列:ll -t 查询文件并以升序排列:ll -t | tac 查询目录下文件数:ll|wc -l

  4. 小记---------linux远程连接集群内其他机器mysql库

    mysql -h -u maxwell -p#10.0.15.145 远程机器ip#-P 注意是大写P 端口#-u 用户#-p 密码

  5. 20 亿的 URL 集合,如何快速判断其中一个?

    假设遇到这样一个问题:一个网站有 20 亿 url 存在一个黑名单中,这个黑名单要怎么存?若此时随便输入一个 url,你如何快速判断该 url 是否在这个黑名单中?并且需在给定内存空间(比如:500M ...

  6. 解决 Intellij IDEA Cannot Resolve Symbol ‘BASE Decoder’ 问题

    最近接盘了用springboot框架搭建的后台,第一次接触java的我就遇上了bug: 因为jdk更新而导致Cannot Resolve Symbol ‘BASE Decoder’ 问题 看了很多网上 ...

  7. javaweb: request.getParameter()、request.setAttribute()与request.getAttribute()的作用 (转)

    出处:https://blog.csdn.net/qq_41937388/article/details/87972914 1.request.getParameter()方法是获取通过类似post, ...

  8. 安装linux mint后要做20件事

    Linux Mint 17 Qiana Cinnamon Linux Mint 17已经发布,定名为Qiana.Mint是Linux最佳发行版之一,它定位于桌面用户,关注可用性和简洁.它携带了风格迥异 ...

  9. 查看 MySQL 数据库的编译参数

    grep CONFIGURE_LINE /app/mysql/bin/mysqlbug 提示:还发现很多人先 cat,在 grep,很不专业,应杜绝. 范例 3: [root@VM-001~]# gr ...

  10. keymaps - 对键盘映射文件的描述

    描述 (DESCRIPTION) loadkeys(1) 能够 通过 调入 指定的 文件 修改 键盘翻译表, 键盘翻译表 通常 用于 内核的 键盘驱动程序; 另外 dumpkeys(1) 可以 根据 ...