Description

Jimmy is studying Advanced Graph Algorithms at his university. His most recent assignment is to find a maximum matching in a special kind of graph. This graph is undirected, has N vertices and each vertex has degree 3. Furthermore,
the graph is 2-edge-connected (that is, at least 2 edges need to be removed in order to make the graph disconnected). A matching is a subset of the graph’s edges, such that no two edges in the subset have a common vertex. A maximum matching is a matching having
the maximum cardinality.
  Given a series of instances of the special graph mentioned above, find the cardinality of a maximum matching for each instance.
 

Input

The first line of input contains an integer number T, representing the number of graph descriptions to follow. Each description contains on the first line an even integer number N (4<=N<=5000), representing the number of vertices.
Each of the next 3*N/2 lines contains two integers A and B, separated by one blank, denoting that there is an edge between vertex A and vertex B. The vertices are numbered from 1 to N. No edge may appear twice in the input.
 

Output

For each of the T graphs, in the order given in the input, print one line containing the cardinality of a maximum matching.
 

Sample Input


2
4
1 2
1 3
1 4
2 3
2 4
3 4
4
1 2
1 3
1 4
2 3
2 4
3 4
 

Sample Output


2
2
 

Source

Politehnica University of Bucharest Local Team Contest 2007

题意:给你双向边,求最多留下多少条边使得每条边都没有共同拥有顶点

思路:二分图匹配的定义。对于双向的要/2。用vector会超时。要用邻接表

#include <stdio.h>
#include <string.h>
#include <algorithm>
#include <iostream>
using namespace std;
const int MAXN = 5010;
const int MAXM = 50010; struct Edge {
int to, next;
} edge[MAXM];
int head[MAXN], tot;
int linker[MAXN];
bool used[MAXN];
int n, m; void init() {
tot = 0;
memset(head,-1,sizeof(head));
} void addEdge(int u, int v) {
edge[tot].to = v; edge[tot].next = head[u];
head[u] = tot++;
} bool dfs(int u) {
for (int i = head[u]; i != -1; i = edge[i].next) {
int v = edge[i].to;
if (!used[v]) {
used[v] = true;
if (linker[v] == -1 || dfs(linker[v])) {
linker[v] = u;
return true;
}
}
}
return false;
} int solve() {
int ans = 0;
memset(linker, -1, sizeof(linker));
for (int i = 0; i < n; i++) {
memset(used, false, sizeof(used));
if (dfs(i))
ans++;
}
return ans;
} int main() {
int t;
scanf("%d",&t);
while (t--) {
scanf("%d", &n);
m = n*3/2;
int u,v;
init();
while (m--) {
scanf("%d%d", &u, &v);
u--; v--;
addEdge(u,v);
addEdge(v,u);
}
printf("%d\n", solve()/2);
}
return 0;
}

HDU - 1845 Jimmy’s Assignment (二分匹配)的更多相关文章

  1. HDU 1845 Jimmy’s Assignment(二分匹配)

    Jimmy’s Assignment Time Limit: 1000/1000 MS (Java/Others)    Memory Limit: 65535/65535 K (Java/Other ...

  2. HDU 2063 过山车(二分匹配入门)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=2063 二分匹配最大匹配数简单题,匈牙利算法.学习二分匹配传送门:http://blog.csdn.ne ...

  3. HDU - 1045 Fire Net(二分匹配)

    Description Suppose that we have a square city with straight streets. A map of a city is a square bo ...

  4. hdu 4619 Warm up 2 (二分匹配)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4619 题意: 平面上有一些1×2的骨牌,每张骨牌要么水平放置,要么竖直放置,并且保证同方向放置的骨牌不 ...

  5. HDU 2063 过山车 二分匹配

    解题报告:有m个女生和n个男生要结成伴坐过山车,每个女生都有几个自己想选择的男生,然后要你确定最多能组成多少对组合. 最裸的一个二分匹配,这是我第一次写二分匹配,给我最大的感受就是看那些人讲的匈牙利算 ...

  6. hdu 1528 Card Game Cheater (二分匹配)

    Card Game Cheater Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others ...

  7. hdu 1068 Girls and Boys (二分匹配)

    Girls and Boys Time Limit: 20000/10000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others) ...

  8. HDU - 1068 Girls and Boys(二分匹配---最大独立集)

    题意:给出每个学生的标号及与其有缘分成为情侣的人的标号,求一个最大集合,集合中任意两个人都没有缘分成为情侣. 分析: 1.若两人有缘分,则可以连一条边,本题是求一个最大集合,集合中任意两点都不相连,即 ...

  9. hdu 1150 Machine Schedule (经典二分匹配)

    //A组n人 B组m人 //最多有多少人匹配 每人仅仅有匹配一次 # include<stdio.h> # include<string.h> # include<alg ...

随机推荐

  1. cpu、gpu 安装框架pytorch,cntk,theano及测试

    一,cpu 下安装 tensorflow conda env list source activate tensorflow 直接安装相应版本 python import tensorflow as ...

  2. PHP大文件分片上传断点续传实例源码

    1.使用PHP的创始人 Rasmus Lerdorf 写的APC扩展模块来实现(http://pecl.php.net/package/apc) APC实现方法: 安装APC,参照官方文档安装,可以使 ...

  3. 2018百度之星初赛A轮 度度熊学队列

    注意:刚开始用数组存deque<int> qa[MAX]会爆内存 需要改用map<int, deque<int> > qa优化 不明觉厉 #include<b ...

  4. windows10 gcc编译C程序(分步编译)

    下面演示gcc对C源程序的分步编译过程: 1. 编译(Compile) gcc hello.cpp -c # 生成hello.o,目标文件名字和源文件名字一样,VC编译会生成.ojb文件,gcc编译器 ...

  5. OverFeat:基于卷积网络的集成识别、定位与检测

    摘要:我们提出了一个使用卷积网络进行分类.定位和检测的集成框架.我们展示了如何在ConvNet中有效地实现多尺度和滑动窗口方法.我们还介绍了一种新的深度学习方法,通过学习预测对象边界来定位.然后通过边 ...

  6. nginx 日志文件分隔

    Nginx命令 Nginx命令帮助如下 nginx -h nginx version: nginx/0.8.45 Usage: nginx [-?hvVt] [-s signal] [-c filen ...

  7. Android中非activity类调用activity方法

    例如需要使用: alarmManager = (AlarmManager) getSystemService(ALARM_SERVICE); 第一种方法就是使其类变成Activity. 第二种方法便是 ...

  8. 二、启动一款app演示

    一.下载aapt包 1. aapt即Android Asset Packaging Tool,在SDK的build-tools目录下.该工具可以查看apk包名和launcherActivity 2.打 ...

  9. Django学习之缓存

    1.配置 2.应用 由于Django是动态网站,所有每次请求均会去数据进行相应的操作,当程序访问量大时,耗时必然会更加明显,最简单解决方式是使用:缓存.缓存将一个某个views的返回值保存至内存或者m ...

  10. hibernate的查询

    1.条件查询 public List<Weibo> selectOne(int k){ Session session = HibernateUtil.currentSession(); ...