Math.Net Numerics has capability to conduct Markov Chair Monte Carlo simulations, yet the document is very sparse. The only examples I found are in F# (see below). In this note, I attempt to port these examples into C# and hope others may find it useful in their research. Note that there are some errors in the original F# code, and this note corrected them. The ported code has been published as ASP.NET web services at x.ecoruse.org. Thus, one can easily copied over to any windows or web development projects.

Ported C# Code

using System;
using System.Collections.Generic;
using System.Web;
using System.Web.Services;
using MathNet.Numerics.Distributions;
using MathNet.Numerics.Statistics;
using MathNet.Numerics.Random;
using MathNet.Numerics.Statistics.Mcmc; [WebService(Namespace = "http://x.ecourse.org")]
[WebServiceBinding(ConformsTo = WsiProfiles.BasicProfile1_1)]
[System.Web.Script.Services.ScriptService]
public class MCMC : System.Web.Services.WebService { public MCMC () {} [WebMethod(Description = "Sampling Beta variable via rejection")]
public double[] BetaViaRejection(double a, double b, int N) {
    var rnd = new MersenneTwister();
    var beta = new Beta(a, b);
    var uniform = new ContinuousUniform(0.0, 1.0, rnd);
    var rs = new RejectionSampler(
            (x => Math.Pow(x, beta.A - 1.0) * Math.Pow(1.0 - x, beta.B - 1.0)),
            (x => 0.021), (() => uniform.Sample()));
    var arr= rs.Sample(N);
     return arr;
    //string result = "Theoretical Mean:" + beta.Mean + " vs Sample Mean: "
        + Statistics.Mean(arr) + ";" + "Theoretical StarndardDeviation:"
        + beta.StdDev + " vs Sample StandardDeviation: "
        + Statistics.StandardDeviation(arr) + ";" + " Acceptance Rate:" + rs.AcceptanceRate;
    //return result;
} [WebMethod(Description = "Sampling a normal variable via Metropolis")]
public double[] NormaViaMetropolis(double mean, double stdev, int N)
{
    var rnd = new MersenneTwister();
    var normal = new Normal(mean, stdev);     var ms = new MetropolisHastingsSampler(0.1, x => Math.Log(normal.Density(x)),
                                                (x,y)=>Normal.PDFLn(x,0.3,y),
                                                 x => Normal.Sample(rnd, x, 0.3), 20);     var arr = ms.Sample(N);
     return arr;
    //string result = "Theoretical Mean:" + beta.Mean + " vs Sample Mean: " 
        + Statistics.Mean(arr) + ";" + "Theoretical StarndardDeviation:"
        + beta.StdDev + " vs Sample StandardDeviation: "
        + Statistics.StandardDeviation(arr) + ";" + " Acceptance Rate:" + rs.AcceptanceRate;
     //return result;
} [WebMethod(Description = "Sampling a normal variable via Metropolis symmetric proposal")]
public double[] NormaViaMetropolisSymmetricProposal(double mean, double stdev, int N)
{
    var rnd = new MersenneTwister();
    var normal = new Normal(mean, stdev);     var ms = new MetropolisHastingsSampler(0.1, x => Math.Log(normal.Density(x)),
                                                 (x,y) => npdf(x,y,03),
                                                 x => Normal.Sample(rnd,x,0.3), 10);     var arr = ms.Sample(N);
     return arr;
     //string result = "Theoretical Mean:" + beta.Mean + " vs Sample Mean: " 
        + Statistics.Mean(arr) + ";" + "Theoretical StarndardDeviation:"
        + beta.StdDev + " vs Sample StandardDeviation: "
        + Statistics.StandardDeviation(arr) + ";" + " Acceptance Rate:" + rs.AcceptanceRate;
     //return result;
} [WebMethod(Description = "Sampling a normal variable via Metropolis asymmetric proposal")]
public double[] NormaViaMetropolisAsymmetricProposal(double mean, double stdev, int N)
{
    var rnd = new MersenneTwister();
    var normal = new Normal(mean, stdev);     var ms = new MetropolisHastingsSampler(0.1, x => Math.Log(normal.Density(x)),
         (xnew, x) => Math.Log(0.5 * Math.Exp(npdf(xnew,x, 0.3))
                        + 0.5 * Math.Exp(npdf(xnew, x+0.1, 0.3))),
               x => MixSample(x), 10);     var arr = ms.Sample(N);
     return arr;
     //string result = "Theoretical Mean:" + beta.Mean + " vs Sample Mean: " 
        + Statistics.Mean(arr) + ";" + "Theoretical StarndardDeviation:"
        + beta.StdDev + " vs Sample StandardDeviation: "
        + Statistics.StandardDeviation(arr) + ";" + " Acceptance Rate:" + rs.AcceptanceRate;
     //return result;
} [WebMethod(Description = "Slice sampling a normal distributed random variable")]
public double[] NormaViaSliceSampling(double mean, double stdev, int N)
{
    var rnd = new MersenneTwister();
    var normal = new Normal(mean, stdev);     var ms = new UnivariateSliceSampler(0.1, x => npdfNoNormalized(x, mean, stdev), 5, 1.0);
    var arr = ms.Sample(N);
     return arr;
     //string result = "Theoretical Mean:" + beta.Mean + " vs Sample Mean: " 
        + Statistics.Mean(arr) + ";" + "Theoretical StarndardDeviation:"
        + beta.StdDev + " vs Sample StandardDeviation: "
        + Statistics.StandardDeviation(arr) + ";" + " Acceptance Rate:" + rs.AcceptanceRate;
     //return result;
} public double npdf(double x, double m, double s)
{
    return -0.5 * (x - m) * (x - m) / (s * s) - 0.5 * Math.Log(2.0 * System.Math.PI * s * s);
} public double npdfNoNormalized(double x, double m, double s)
{
    return -0.5 * (x - m) * (x - m) / (s * s);
} public double MixSample(double x)
{
    var rnd = new MersenneTwister();
    if (Bernoulli.Sample(rnd, 0.5) == 1)
        return Normal.Sample(rnd, x, 0.3);
    else
        return Normal.Sample(rnd, x + 0.1, 0.3);
}
}

Original F# Code


// Math.NET Numerics, part of the Math.NET Project
// http://numerics.mathdotnet.com
// http://github.com/mathnet/mathnet-numerics
// http://mathnetnumerics.codeplex.com
//
// Copyright (c) 2009-2013 Math.NET
//
// Permission is hereby granted, free of charge, to any person
// obtaining a copy of this software and associated documentation
// files (the "Software"), to deal in the Software without
// restriction, including without limitation the rights to use,
// copy, modify, merge, publish, distribute, sublicense, and/or sell
// copies of the Software, and to permit persons to whom the
// Software is furnished to do so, subject to the following
// conditions:
//
// The above copyright notice and this permission notice shall be
// included in all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
// EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES
// OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
// NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
// HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
// WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
// FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
// OTHER DEALINGS IN THE SOFTWARE.
//

#r "../../out/lib/Net40/MathNet.Numerics.dll"
#r "../../out/lib/Net40/MathNet.Numerics.FSharp.dll"

open MathNet.Numerics
open MathNet.Numerics.Random
open MathNet.Numerics.Statistics
open MathNet.Numerics.Distributions
open MathNet.Numerics.Statistics.Mcmc

/// The number of samples to gather for each sampler.
let N = 10000
/// The random number generator we use for the examples.
let rnd = new MersenneTwister()

//
// Example 1: Sampling a Beta distributed variable through rejection sampling.
//
// Target Distribution: Beta(2.7, 6.3)
//
// -----------------------------------------------------------------------------
do
printfn "Rejection Sampling Example"

/// The target distribution.
let beta = new Beta(2.7, 6.3)

/// Samples uniform distributed variables.
let uniform = new ContinuousUniform(0.0, 1.0, RandomSource = rnd)

/// Implements the rejection sampling procedure.
let rs = new RejectionSampler( ( fun x -> x**(beta.A-1.0) * (1.0 - x)**(beta.B-1.0) ),
( fun x -> 0.021 ),
( fun () -> uniform.Sample()) )

/// An array of samples from the rejection sampler.
let arr = rs.Sample(N)

/// The true distribution.
printfn "\tEmpirical Mean = %f (should be %f)" (Statistics.Mean(arr)) beta.Mean
printfn "\tEmpirical StdDev = %f (should be %f)" (Statistics.StandardDeviation(arr)) beta.StdDev
printfn "\tAcceptance rate = %f" rs.AcceptanceRate
printfn ""

//
// Example 2: Sampling a normal distributed variable through Metropolis sampling.
//
// Target Distribution: Normal(1.0, 3.5)
//
// -----------------------------------------------------------------------------
do
printfn "Metropolis Sampling Example"

let mean, stddev = 1.0, 3.5
let normal = new Normal(mean, stddev)

/// Implements the rejection sampling procedure.
let ms = new MetropolisSampler( 0.1, (fun x -> log(normal.Density(x))),
(fun x -> Normal.Sample(rnd, x, 0.3)), 20,
RandomSource = rnd )

/// An array of samples from the rejection sampler.
let arr = ms.Sample(N)

/// The true distribution.
printfn "\tEmpirical Mean = %f (should be %f)" (Statistics.Mean(arr)) normal.Mean
printfn "\tEmpirical StdDev = %f (should be %f)" (Statistics.StandardDeviation(arr)) normal.StdDev
printfn "\tAcceptance rate = %f" ms.AcceptanceRate
printfn ""

//
// Example 3: Sampling a normal distributed variable through Metropolis-Hastings sampling
// with a symmetric proposal distribution.
//
// Target Distribution: Normal(1.0, 3.5)
//
// -----------------------------------------------------------------------------------------
do
printfn "Metropolis Hastings Sampling Example (Symmetric Proposal)"
let mean, stddev = 1.0, 3.5
let normal = new Normal(mean, stddev)

/// Evaluates the log normal distribution.
let npdf x m s = -0.5*(x-m)*(x-m)/(s*s) - 0.5 * log(Constants.Pi2 * s * s)

/// Implements the rejection sampling procedure.
let ms = new MetropolisHastingsSampler( 0.1, (fun x -> log(normal.Density(x))),
(fun x y -> npdf x y 0.3), (fun x -> Normal.Sample(rnd, x, 0.3)), 10,
RandomSource = rnd )

/// An array of samples from the rejection sampler.
let arr = ms.Sample(N)

/// The true distribution.
printfn "\tEmpirical Mean = %f (should be %f)" (Statistics.Mean(arr)) normal.Mean
printfn "\tEmpirical StdDev = %f (should be %f)" (Statistics.StandardDeviation(arr)) normal.StdDev
printfn "\tAcceptance rate = %f" ms.AcceptanceRate
printfn ""

//
// Example 4: Sampling a normal distributed variable through Metropolis-Hastings sampling
// with a asymmetric proposal distribution.
//
// Target Distribution: Normal(1.0, 3.5)
//
// -----------------------------------------------------------------------------------------
do
printfn "Metropolis Hastings Sampling Example (Assymetric Proposal)"
let mean, stddev = 1.0, 3.5
let normal = new Normal(mean, stddev)

/// Evaluates the logarithm of the normal distribution function.
let npdf x m s = -0.5*(x-m)*(x-m)/(s*s) - 0.5 * log(Constants.Pi2 * s * s)

/// Samples from a mixture that is biased towards samples larger than x.
let mixSample x =
if Bernoulli.Sample(rnd, 0.5) = 1 then
Normal.Sample(rnd, x, 0.3)
else
Normal.Sample(rnd, x + 0.1, 0.3)

/// The transition kernel for the proposal above.
let krnl xnew x = log (0.5 * exp(npdf xnew x 0.3) + 0.5 * exp(npdf xnew (x+0.1) 0.3))

/// Implements the rejection sampling procedure.
let ms = new MetropolisHastingsSampler( 0.1, (fun x -> log(normal.Density(x))),
(fun xnew x -> krnl xnew x), (fun x -> mixSample x), 10,
RandomSource = rnd )

/// An array of samples from the rejection sampler.
let arr = ms.Sample(N)

/// The true distribution.
printfn "\tEmpirical Mean = %f (should be %f)" (Statistics.Mean(arr)) normal.Mean
printfn "\tEmpirical StdDev = %f (should be %f)" (Statistics.StandardDeviation(arr)) normal.StdDev
printfn "\tAcceptance rate = %f" ms.AcceptanceRate
printfn ""

//
// Example 5: Slice sampling a normal distributed random variable.
//
// Target Distribution: Normal(1.0, 3.5)
//
// -----------------------------------------------------------------------------------------
do
printfn "Slice Sampling Example"
let mean, stddev = 1.0, 3.5
let normal = new Normal(mean, stddev)

/// Evaluates the unnormalized logarithm of the normal distribution function.
let npdf x m s = -0.5*(x-m)*(x-m)/(s*s)

/// Implements the rejection sampling procedure.
let ms = new UnivariateSliceSampler( 0.1, (fun x -> npdf x mean stddev), 5, 1.0, RandomSource = rnd )

/// An array of samples from the rejection sampler.
let arr = ms.Sample(N)

/// The true distribution.
printfn "\tEmpirical Mean = %f (should be %f)" (Statistics.Mean(arr)) normal.Mean
printfn "\tEmpirical StdDev = %f (should be %f)" (Statistics.StandardDeviation(arr)) normal.StdDev
printfn ""

Markov Chain Monte Carlo Simulation using C# and MathNet的更多相关文章

  1. PRML读书会第十一章 Sampling Methods(MCMC, Markov Chain Monte Carlo,细致平稳条件,Metropolis-Hastings,Gibbs Sampling,Slice Sampling,Hamiltonian MCMC)

    主讲人 网络上的尼采 (新浪微博: @Nietzsche_复杂网络机器学习) 网络上的尼采(813394698) 9:05:00  今天的主要内容:Markov Chain Monte Carlo,M ...

  2. (转)Markov Chain Monte Carlo

    Nice R Code Punning code better since 2013 RSS Blog Archives Guides Modules About Markov Chain Monte ...

  3. 马尔科夫链蒙特卡洛(Markov chain Monte Carlo)

    (学习这部分内容大约需要1.3小时) 摘要 马尔科夫链蒙特卡洛(Markov chain Monte Carlo, MCMC) 是一类近似采样算法. 它通过一条拥有稳态分布 \(p\) 的马尔科夫链对 ...

  4. [Bayes] MCMC (Markov Chain Monte Carlo)

    不错的文章:LDA-math-MCMC 和 Gibbs Sampling 可作为精进MCMC抽样方法的学习材料. 简单概率分布的模拟 Box-Muller变换原理详解 本质上来说,计算机只能生产符合均 ...

  5. 为什么要用Markov chain Monte Carlo (MCMC)

    马尔科夫链的蒙特卡洛采样的核心思想是构造一个Markov chain,使得从任意一个状态采样开始,按该Markov chain转移,经过一段时间的采样,逼近平稳分布stationary distrib ...

  6. 蒙特卡洛模拟(Monte Carlo simulation)

    1.蒙特卡罗模拟简介 蒙特卡罗模拟,也叫统计模拟,这个术语是二战时期美国物理学家Metropolis执行曼哈顿计划的过程中提出来的,其基本思想很早以前就被人们所发现和利用.早在17世纪,人们就知道用事 ...

  7. History of Monte Carlo Methods - Part 1

    History of Monte Carlo Methods - Part 1 Some time ago in June 2013 I gave a lab tutorial on Monte Ca ...

  8. Monte Carlo Approximations

    准备总结几篇关于 Markov Chain Monte Carlo 的笔记. 本系列笔记主要译自A Gentle Introduction to Markov Chain Monte Carlo (M ...

  9. Introduction To Monte Carlo Methods

    Introduction To Monte Carlo Methods I’m going to keep this tutorial light on math, because the goal ...

随机推荐

  1. 点云数据中的三维信息提取pcl

    https://www.hanspub.org/journal/PaperInformation.aspx?paperID=24702 https://wenku.baidu.com/view/160 ...

  2. 【转】Django之Model层的F对象,Q对象以及聚合函数

    转自:https://blog.csdn.net/wsy_666/article/details/86692050 一.F对象: 作用:用于处理类属性(即model的某个列数据),类属性之间的比较.使 ...

  3. 有色物体检测opencv+python

    import cv2 import numpy as np import matplotlib.pyplot as plt cap=cv2.VideoCapture(0) while(1): ret, ...

  4. DVWA--XSS(反射型)

    0X01爱之初介绍 虽然XSS已经做了两节了 但是还是还是简单解释一下 前言:跨站脚本(Cross-Site Scripting,XSS)是一种经常出现在Web应用程序中的计算机安全漏洞,是由于Web ...

  5. vue 路由懒加载 resolve vue-router配置

    使用方法 component:resolve => require(['@/pages/About'],resolve) //"@"相当于".." 懒加载 ...

  6. 几种常见的CSS布局

    本文概要 本文将介绍如下几种常见的布局: 其中实现三栏布局有多种方式,本文着重介绍圣杯布局和双飞翼布局.另外几种可以猛戳实现三栏布局的几种方法 一.单列布局 常见的单列布局有两种: header,co ...

  7. (转)IIS Express介绍与使用

    IIS Express是什么?IIS Express是为开发人员优化的轻量级.自包含版本的IIS.IIS Express使使用当前最新版本的IIS来开发和测试网站变得容易.它具有IIS 7及以上的所有 ...

  8. SQL Server标量函数改写内联表值函数优化案例

    问题SQL: SELECT TOP 1001 ha.HuntApplicationID , ha.PartyNumber , mht.Name AS MasterHuntTypeName , htly ...

  9. Mybaits成长之路

    今天刚开始接触mybaits,接下来介绍mybaits的demo的建立 1根据数据库表定义一个实体类Employee package com.atguigu.mybatis.bean; public ...

  10. 1、Electron入门HelloWorld案例

    一.Electron是什么? 官网:https://electronjs.org/ Electron是由Github开发,用HTML,CSS和JavaScript来构建跨平台桌面应用程序的一个开源库. ...