Markov Chain Monte Carlo Simulation using C# and MathNet
Math.Net Numerics has capability to conduct Markov Chair Monte Carlo simulations, yet the document is very sparse. The only examples I found are in F# (see below). In this note, I attempt to port these examples into C# and hope others may find it useful in their research. Note that there are some errors in the original F# code, and this note corrected them. The ported code has been published as ASP.NET web services at x.ecoruse.org. Thus, one can easily copied over to any windows or web development projects.
Ported C# Code
using System;
using System.Collections.Generic;
using System.Web;
using System.Web.Services;
using MathNet.Numerics.Distributions;
using MathNet.Numerics.Statistics;
using MathNet.Numerics.Random;
using MathNet.Numerics.Statistics.Mcmc; [WebService(Namespace = "http://x.ecourse.org")]
[WebServiceBinding(ConformsTo = WsiProfiles.BasicProfile1_1)]
[System.Web.Script.Services.ScriptService]
public class MCMC : System.Web.Services.WebService { public MCMC () {} [WebMethod(Description = "Sampling Beta variable via rejection")]
public double[] BetaViaRejection(double a, double b, int N) {
var rnd = new MersenneTwister();
var beta = new Beta(a, b);
var uniform = new ContinuousUniform(0.0, 1.0, rnd);
var rs = new RejectionSampler(
(x => Math.Pow(x, beta.A - 1.0) * Math.Pow(1.0 - x, beta.B - 1.0)),
(x => 0.021), (() => uniform.Sample()));
var arr= rs.Sample(N);
return arr;
//string result = "Theoretical Mean:" + beta.Mean + " vs Sample Mean: "
+ Statistics.Mean(arr) + ";" + "Theoretical StarndardDeviation:"
+ beta.StdDev + " vs Sample StandardDeviation: "
+ Statistics.StandardDeviation(arr) + ";" + " Acceptance Rate:" + rs.AcceptanceRate;
//return result;
} [WebMethod(Description = "Sampling a normal variable via Metropolis")]
public double[] NormaViaMetropolis(double mean, double stdev, int N)
{
var rnd = new MersenneTwister();
var normal = new Normal(mean, stdev); var ms = new MetropolisHastingsSampler(0.1, x => Math.Log(normal.Density(x)),
(x,y)=>Normal.PDFLn(x,0.3,y),
x => Normal.Sample(rnd, x, 0.3), 20); var arr = ms.Sample(N);
return arr;
//string result = "Theoretical Mean:" + beta.Mean + " vs Sample Mean: "
+ Statistics.Mean(arr) + ";" + "Theoretical StarndardDeviation:"
+ beta.StdDev + " vs Sample StandardDeviation: "
+ Statistics.StandardDeviation(arr) + ";" + " Acceptance Rate:" + rs.AcceptanceRate;
//return result;
} [WebMethod(Description = "Sampling a normal variable via Metropolis symmetric proposal")]
public double[] NormaViaMetropolisSymmetricProposal(double mean, double stdev, int N)
{
var rnd = new MersenneTwister();
var normal = new Normal(mean, stdev); var ms = new MetropolisHastingsSampler(0.1, x => Math.Log(normal.Density(x)),
(x,y) => npdf(x,y,03),
x => Normal.Sample(rnd,x,0.3), 10); var arr = ms.Sample(N);
return arr;
//string result = "Theoretical Mean:" + beta.Mean + " vs Sample Mean: "
+ Statistics.Mean(arr) + ";" + "Theoretical StarndardDeviation:"
+ beta.StdDev + " vs Sample StandardDeviation: "
+ Statistics.StandardDeviation(arr) + ";" + " Acceptance Rate:" + rs.AcceptanceRate;
//return result;
} [WebMethod(Description = "Sampling a normal variable via Metropolis asymmetric proposal")]
public double[] NormaViaMetropolisAsymmetricProposal(double mean, double stdev, int N)
{
var rnd = new MersenneTwister();
var normal = new Normal(mean, stdev); var ms = new MetropolisHastingsSampler(0.1, x => Math.Log(normal.Density(x)),
(xnew, x) => Math.Log(0.5 * Math.Exp(npdf(xnew,x, 0.3))
+ 0.5 * Math.Exp(npdf(xnew, x+0.1, 0.3))),
x => MixSample(x), 10); var arr = ms.Sample(N);
return arr;
//string result = "Theoretical Mean:" + beta.Mean + " vs Sample Mean: "
+ Statistics.Mean(arr) + ";" + "Theoretical StarndardDeviation:"
+ beta.StdDev + " vs Sample StandardDeviation: "
+ Statistics.StandardDeviation(arr) + ";" + " Acceptance Rate:" + rs.AcceptanceRate;
//return result;
} [WebMethod(Description = "Slice sampling a normal distributed random variable")]
public double[] NormaViaSliceSampling(double mean, double stdev, int N)
{
var rnd = new MersenneTwister();
var normal = new Normal(mean, stdev); var ms = new UnivariateSliceSampler(0.1, x => npdfNoNormalized(x, mean, stdev), 5, 1.0);
var arr = ms.Sample(N);
return arr;
//string result = "Theoretical Mean:" + beta.Mean + " vs Sample Mean: "
+ Statistics.Mean(arr) + ";" + "Theoretical StarndardDeviation:"
+ beta.StdDev + " vs Sample StandardDeviation: "
+ Statistics.StandardDeviation(arr) + ";" + " Acceptance Rate:" + rs.AcceptanceRate;
//return result;
} public double npdf(double x, double m, double s)
{
return -0.5 * (x - m) * (x - m) / (s * s) - 0.5 * Math.Log(2.0 * System.Math.PI * s * s);
} public double npdfNoNormalized(double x, double m, double s)
{
return -0.5 * (x - m) * (x - m) / (s * s);
} public double MixSample(double x)
{
var rnd = new MersenneTwister();
if (Bernoulli.Sample(rnd, 0.5) == 1)
return Normal.Sample(rnd, x, 0.3);
else
return Normal.Sample(rnd, x + 0.1, 0.3);
}
}
Original F# Code
/
// Math.NET Numerics, part of the Math.NET Project
// http://numerics.mathdotnet.com
// http://github.com/mathnet/mathnet-numerics
// http://mathnetnumerics.codeplex.com
//
// Copyright (c) 2009-2013 Math.NET
//
// Permission is hereby granted, free of charge, to any person
// obtaining a copy of this software and associated documentation
// files (the "Software"), to deal in the Software without
// restriction, including without limitation the rights to use,
// copy, modify, merge, publish, distribute, sublicense, and/or sell
// copies of the Software, and to permit persons to whom the
// Software is furnished to do so, subject to the following
// conditions:
//
// The above copyright notice and this permission notice shall be
// included in all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
// EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES
// OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
// NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
// HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
// WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
// FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
// OTHER DEALINGS IN THE SOFTWARE.
//
#r "../../out/lib/Net40/MathNet.Numerics.dll"
#r "../../out/lib/Net40/MathNet.Numerics.FSharp.dll"
open MathNet.Numerics
open MathNet.Numerics.Random
open MathNet.Numerics.Statistics
open MathNet.Numerics.Distributions
open MathNet.Numerics.Statistics.Mcmc
/// The number of samples to gather for each sampler.
let N = 10000
/// The random number generator we use for the examples.
let rnd = new MersenneTwister()
//
// Example 1: Sampling a Beta distributed variable through rejection sampling.
//
// Target Distribution: Beta(2.7, 6.3)
//
// -----------------------------------------------------------------------------
do
printfn "Rejection Sampling Example"
/// The target distribution.
let beta = new Beta(2.7, 6.3)
/// Samples uniform distributed variables.
let uniform = new ContinuousUniform(0.0, 1.0, RandomSource = rnd)
/// Implements the rejection sampling procedure.
let rs = new RejectionSampler( ( fun x -> x**(beta.A-1.0) * (1.0 - x)**(beta.B-1.0) ),
( fun x -> 0.021 ),
( fun () -> uniform.Sample()) )
/// An array of samples from the rejection sampler.
let arr = rs.Sample(N)
/// The true distribution.
printfn "\tEmpirical Mean = %f (should be %f)" (Statistics.Mean(arr)) beta.Mean
printfn "\tEmpirical StdDev = %f (should be %f)" (Statistics.StandardDeviation(arr)) beta.StdDev
printfn "\tAcceptance rate = %f" rs.AcceptanceRate
printfn ""
//
// Example 2: Sampling a normal distributed variable through Metropolis sampling.
//
// Target Distribution: Normal(1.0, 3.5)
//
// -----------------------------------------------------------------------------
do
printfn "Metropolis Sampling Example"
let mean, stddev = 1.0, 3.5
let normal = new Normal(mean, stddev)
/// Implements the rejection sampling procedure.
let ms = new MetropolisSampler( 0.1, (fun x -> log(normal.Density(x))),
(fun x -> Normal.Sample(rnd, x, 0.3)), 20,
RandomSource = rnd )
/// An array of samples from the rejection sampler.
let arr = ms.Sample(N)
/// The true distribution.
printfn "\tEmpirical Mean = %f (should be %f)" (Statistics.Mean(arr)) normal.Mean
printfn "\tEmpirical StdDev = %f (should be %f)" (Statistics.StandardDeviation(arr)) normal.StdDev
printfn "\tAcceptance rate = %f" ms.AcceptanceRate
printfn ""
//
// Example 3: Sampling a normal distributed variable through Metropolis-Hastings sampling
// with a symmetric proposal distribution.
//
// Target Distribution: Normal(1.0, 3.5)
//
// -----------------------------------------------------------------------------------------
do
printfn "Metropolis Hastings Sampling Example (Symmetric Proposal)"
let mean, stddev = 1.0, 3.5
let normal = new Normal(mean, stddev)
/// Evaluates the log normal distribution.
let npdf x m s = -0.5*(x-m)*(x-m)/(s*s) - 0.5 * log(Constants.Pi2 * s * s)
/// Implements the rejection sampling procedure.
let ms = new MetropolisHastingsSampler( 0.1, (fun x -> log(normal.Density(x))),
(fun x y -> npdf x y 0.3), (fun x -> Normal.Sample(rnd, x, 0.3)), 10,
RandomSource = rnd )
/// An array of samples from the rejection sampler.
let arr = ms.Sample(N)
/// The true distribution.
printfn "\tEmpirical Mean = %f (should be %f)" (Statistics.Mean(arr)) normal.Mean
printfn "\tEmpirical StdDev = %f (should be %f)" (Statistics.StandardDeviation(arr)) normal.StdDev
printfn "\tAcceptance rate = %f" ms.AcceptanceRate
printfn ""
//
// Example 4: Sampling a normal distributed variable through Metropolis-Hastings sampling
// with a asymmetric proposal distribution.
//
// Target Distribution: Normal(1.0, 3.5)
//
// -----------------------------------------------------------------------------------------
do
printfn "Metropolis Hastings Sampling Example (Assymetric Proposal)"
let mean, stddev = 1.0, 3.5
let normal = new Normal(mean, stddev)
/// Evaluates the logarithm of the normal distribution function.
let npdf x m s = -0.5*(x-m)*(x-m)/(s*s) - 0.5 * log(Constants.Pi2 * s * s)
/// Samples from a mixture that is biased towards samples larger than x.
let mixSample x =
if Bernoulli.Sample(rnd, 0.5) = 1 then
Normal.Sample(rnd, x, 0.3)
else
Normal.Sample(rnd, x + 0.1, 0.3)
/// The transition kernel for the proposal above.
let krnl xnew x = log (0.5 * exp(npdf xnew x 0.3) + 0.5 * exp(npdf xnew (x+0.1) 0.3))
/// Implements the rejection sampling procedure.
let ms = new MetropolisHastingsSampler( 0.1, (fun x -> log(normal.Density(x))),
(fun xnew x -> krnl xnew x), (fun x -> mixSample x), 10,
RandomSource = rnd )
/// An array of samples from the rejection sampler.
let arr = ms.Sample(N)
/// The true distribution.
printfn "\tEmpirical Mean = %f (should be %f)" (Statistics.Mean(arr)) normal.Mean
printfn "\tEmpirical StdDev = %f (should be %f)" (Statistics.StandardDeviation(arr)) normal.StdDev
printfn "\tAcceptance rate = %f" ms.AcceptanceRate
printfn ""
//
// Example 5: Slice sampling a normal distributed random variable.
//
// Target Distribution: Normal(1.0, 3.5)
//
// -----------------------------------------------------------------------------------------
do
printfn "Slice Sampling Example"
let mean, stddev = 1.0, 3.5
let normal = new Normal(mean, stddev)
/// Evaluates the unnormalized logarithm of the normal distribution function.
let npdf x m s = -0.5*(x-m)*(x-m)/(s*s)
/// Implements the rejection sampling procedure.
let ms = new UnivariateSliceSampler( 0.1, (fun x -> npdf x mean stddev), 5, 1.0, RandomSource = rnd )
/// An array of samples from the rejection sampler.
let arr = ms.Sample(N)
/// The true distribution.
printfn "\tEmpirical Mean = %f (should be %f)" (Statistics.Mean(arr)) normal.Mean
printfn "\tEmpirical StdDev = %f (should be %f)" (Statistics.StandardDeviation(arr)) normal.StdDev
printfn ""
Markov Chain Monte Carlo Simulation using C# and MathNet的更多相关文章
- PRML读书会第十一章 Sampling Methods(MCMC, Markov Chain Monte Carlo,细致平稳条件,Metropolis-Hastings,Gibbs Sampling,Slice Sampling,Hamiltonian MCMC)
主讲人 网络上的尼采 (新浪微博: @Nietzsche_复杂网络机器学习) 网络上的尼采(813394698) 9:05:00 今天的主要内容:Markov Chain Monte Carlo,M ...
- (转)Markov Chain Monte Carlo
Nice R Code Punning code better since 2013 RSS Blog Archives Guides Modules About Markov Chain Monte ...
- 马尔科夫链蒙特卡洛(Markov chain Monte Carlo)
(学习这部分内容大约需要1.3小时) 摘要 马尔科夫链蒙特卡洛(Markov chain Monte Carlo, MCMC) 是一类近似采样算法. 它通过一条拥有稳态分布 \(p\) 的马尔科夫链对 ...
- [Bayes] MCMC (Markov Chain Monte Carlo)
不错的文章:LDA-math-MCMC 和 Gibbs Sampling 可作为精进MCMC抽样方法的学习材料. 简单概率分布的模拟 Box-Muller变换原理详解 本质上来说,计算机只能生产符合均 ...
- 为什么要用Markov chain Monte Carlo (MCMC)
马尔科夫链的蒙特卡洛采样的核心思想是构造一个Markov chain,使得从任意一个状态采样开始,按该Markov chain转移,经过一段时间的采样,逼近平稳分布stationary distrib ...
- 蒙特卡洛模拟(Monte Carlo simulation)
1.蒙特卡罗模拟简介 蒙特卡罗模拟,也叫统计模拟,这个术语是二战时期美国物理学家Metropolis执行曼哈顿计划的过程中提出来的,其基本思想很早以前就被人们所发现和利用.早在17世纪,人们就知道用事 ...
- History of Monte Carlo Methods - Part 1
History of Monte Carlo Methods - Part 1 Some time ago in June 2013 I gave a lab tutorial on Monte Ca ...
- Monte Carlo Approximations
准备总结几篇关于 Markov Chain Monte Carlo 的笔记. 本系列笔记主要译自A Gentle Introduction to Markov Chain Monte Carlo (M ...
- Introduction To Monte Carlo Methods
Introduction To Monte Carlo Methods I’m going to keep this tutorial light on math, because the goal ...
随机推荐
- Python黑科技:在家远程遥控公司电脑,python+微信一键连接!
有时候需要远程家里的台式机使用,因为我平时都是用 MAC 多,但是远程唤醒只能针对局域网,比较麻烦,于是我想用微信实现远程唤醒机器. 准备工作 本程序主要是实现远程管理 Windows10操作系统的开 ...
- 利用 clipboardData 在网页中实现截屏粘贴的功能
<!DOCTYPE HTML> <html lang="en-US"> <head> <meta charset="UTF-8& ...
- 1.WIN10下搭建vue开发环境
WIN10下搭建vue开发环境 详细的安装步骤如下: 一.安装node.js 说明:安装node.js的windows版本后,会自动安装好node以及包管理工具npm,我们后续的安装将依赖npm工具. ...
- [CSP-S模拟测试]:数列(数学)
题目传送门(内部题95) 输入格式 第一行三个整数$n,a,b$,第二行$n$个整数$x_1\sim x_n$表示数列. 输出格式 一行一个整数表示答案.无解输出$-1$. 样例 样例输入:2 2 3 ...
- sklearn—支持向量机
SVC介绍: 拟合出来的模型为一个超平面 解决与样本维数无关,适合做文本分类 解决小样本.非线性.高维 是用于分类.回归.孤立点检测的监督学习方法的集合. 优点: 有效的高维空间 维数大于样本数的时候 ...
- AAAI 2018 分析
AAAI 2018 分析 word embedding Learning Sentiment-Specific Word Embedding via Global Sentiment Represen ...
- leetcode 138. Copy List with Random Pointer复杂链表的复制
python代码如下: # Definition for singly-linked list with a random pointer. # class RandomListNode(object ...
- Delphi XE2 之 FireMonkey 入门(34) - 控件基础: TFmxObject: 克隆对象
Delphi XE2 之 FireMonkey 入门(34) - 控件基础: TFmxObject: 克隆对象 有两个和克隆相关的方法: Clone().CloneChildFromStream(). ...
- mysql 5.5 安装教程
(转自:https://www.cnblogs.com/solargen/p/6835399.html) 1. 官网下载mysql5.5 下载地址: http://dev.mysql.com/down ...
- 用例a失败,跳过测试用例b和c并标记失败xfail
前言 当用例a失败的时候,如果用例b和用例c都是依赖于第一个用例的结果,那可以直接跳过用例b和c的测试,直接给他标记失败xfail用到的场景,登录是第一个用例,登录之后的操作b是第二个用例,登录之后操 ...