由于input_data网页打不开,因此从博客找到代码copy:

https://blog.csdn.net/weixin_43159628/article/details/83241345

将代码放置在主目录下以后缀.py结尾

或者将 /home/joel/.local/lib/python2.7/site-packages/tensorflow/examples/tutorials/mnist文件夹的input_data.py 替换为以下代码,请事先备份好原来的input_data.py,从而能够执行:

from tensorflow.examples.tutorials.mnist import input_data
mnist = input_data.read_data_sets('MNIST_data', one_hot=True)

能够执行这两行读写数据的命令;

input_data.py 代码:

# Copyright 2015 Google Inc. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Functions for downloading and reading MNIST data."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import gzip
import os
import tensorflow.python.platform
import numpy
from six.moves import urllib
from six.moves import xrange # pylint: disable=redefined-builtin
import tensorflow as tf
SOURCE_URL = 'http://yann.lecun.com/exdb/mnist/'
def maybe_download(filename, work_directory):
"""Download the data from Yann's website, unless it's already here."""
if not os.path.exists(work_directory):
os.mkdir(work_directory)
filepath = os.path.join(work_directory, filename)
if not os.path.exists(filepath):
filepath, _ = urllib.request.urlretrieve(SOURCE_URL + filename, filepath)
statinfo = os.stat(filepath)
print('Successfully downloaded', filename, statinfo.st_size, 'bytes.')
return filepath
def _read32(bytestream):
dt = numpy.dtype(numpy.uint32).newbyteorder('>')
return numpy.frombuffer(bytestream.read(4), dtype=dt)[0]
def extract_images(filename):
"""Extract the images into a 4D uint8 numpy array [index, y, x, depth]."""
print('Extracting', filename)
with gzip.open(filename) as bytestream:
magic = _read32(bytestream)
if magic != 2051:
raise ValueError(
'Invalid magic number %d in MNIST image file: %s' %
(magic, filename))
num_images = _read32(bytestream)
rows = _read32(bytestream)
cols = _read32(bytestream)
buf = bytestream.read(rows * cols * num_images)
data = numpy.frombuffer(buf, dtype=numpy.uint8)
data = data.reshape(num_images, rows, cols, 1)
return data
def dense_to_one_hot(labels_dense, num_classes=10):
"""Convert class labels from scalars to one-hot vectors."""
num_labels = labels_dense.shape[0]
index_offset = numpy.arange(num_labels) * num_classes
labels_one_hot = numpy.zeros((num_labels, num_classes))
labels_one_hot.flat[index_offset + labels_dense.ravel()] = 1
return labels_one_hot
def extract_labels(filename, one_hot=False):
"""Extract the labels into a 1D uint8 numpy array [index]."""
print('Extracting', filename)
with gzip.open(filename) as bytestream:
magic = _read32(bytestream)
if magic != 2049:
raise ValueError(
'Invalid magic number %d in MNIST label file: %s' %
(magic, filename))
num_items = _read32(bytestream)
buf = bytestream.read(num_items)
labels = numpy.frombuffer(buf, dtype=numpy.uint8)
if one_hot:
return dense_to_one_hot(labels)
return labels
class DataSet(object):
def __init__(self, images, labels, fake_data=False, one_hot=False,
dtype=tf.float32):
"""Construct a DataSet.
one_hot arg is used only if fake_data is true. `dtype` can be either
`uint8` to leave the input as `[0, 255]`, or `float32` to rescale into
`[0, 1]`.
"""
dtype = tf.as_dtype(dtype).base_dtype
if dtype not in (tf.uint8, tf.float32):
raise TypeError('Invalid image dtype %r, expected uint8 or float32' %
dtype)
if fake_data:
self._num_examples = 10000
self.one_hot = one_hot
else:
assert images.shape[0] == labels.shape[0], (
'images.shape: %s labels.shape: %s' % (images.shape,
labels.shape))
self._num_examples = images.shape[0]
# Convert shape from [num examples, rows, columns, depth]
# to [num examples, rows*columns] (assuming depth == 1)
assert images.shape[3] == 1
images = images.reshape(images.shape[0],
images.shape[1] * images.shape[2])
if dtype == tf.float32:
# Convert from [0, 255] -> [0.0, 1.0].
images = images.astype(numpy.float32)
images = numpy.multiply(images, 1.0 / 255.0)
self._images = images
self._labels = labels
self._epochs_completed = 0
self._index_in_epoch = 0
@property
def images(self):
return self._images
@property
def labels(self):
return self._labels
@property
def num_examples(self):
return self._num_examples
@property
def epochs_completed(self):
return self._epochs_completed
def next_batch(self, batch_size, fake_data=False):
"""Return the next `batch_size` examples from this data set."""
if fake_data:
fake_image = [1] * 784
if self.one_hot:
fake_label = [1] + [0] * 9
else:
fake_label = 0
return [fake_image for _ in xrange(batch_size)], [
fake_label for _ in xrange(batch_size)]
start = self._index_in_epoch
self._index_in_epoch += batch_size
if self._index_in_epoch > self._num_examples:
# Finished epoch
self._epochs_completed += 1
# Shuffle the data
perm = numpy.arange(self._num_examples)
numpy.random.shuffle(perm)
self._images = self._images[perm]
self._labels = self._labels[perm]
# Start next epoch
start = 0
self._index_in_epoch = batch_size
assert batch_size <= self._num_examples
end = self._index_in_epoch
return self._images[start:end], self._labels[start:end]
def read_data_sets(train_dir, fake_data=False, one_hot=False, dtype=tf.float32):
class DataSets(object):
pass
data_sets = DataSets()
if fake_data:
def fake():
return DataSet([], [], fake_data=True, one_hot=one_hot, dtype=dtype)
data_sets.train = fake()
data_sets.validation = fake()
data_sets.test = fake()
return data_sets
TRAIN_IMAGES = 'train-images-idx3-ubyte.gz'
TRAIN_LABELS = 'train-labels-idx1-ubyte.gz'
TEST_IMAGES = 't10k-images-idx3-ubyte.gz'
TEST_LABELS = 't10k-labels-idx1-ubyte.gz'
VALIDATION_SIZE = 5000
local_file = maybe_download(TRAIN_IMAGES, train_dir)
train_images = extract_images(local_file)
local_file = maybe_download(TRAIN_LABELS, train_dir)
train_labels = extract_labels(local_file, one_hot=one_hot)
local_file = maybe_download(TEST_IMAGES, train_dir)
test_images = extract_images(local_file)
local_file = maybe_download(TEST_LABELS, train_dir)
test_labels = extract_labels(local_file, one_hot=one_hot)
validation_images = train_images[:VALIDATION_SIZE]
validation_labels = train_labels[:VALIDATION_SIZE]
train_images = train_images[VALIDATION_SIZE:]
train_labels = train_labels[VALIDATION_SIZE:]
data_sets.train = DataSet(train_images, train_labels, dtype=dtype)
data_sets.validation = DataSet(validation_images, validation_labels,
dtype=dtype)
data_sets.test = DataSet(test_images, test_labels, dtype=dtype)
return data_sets

【tensorflow使用笔记二】:tensorflow中input_data.py代码有问题的解决方法的更多相关文章

  1. Robot Framework中ride.py打不开的解决方法

    1.首先查看wxPython版本是否跟python的版本一致,一般都使用wxPython2.8-win64-unicode-2.8.12.1-py27.exe或者wxPython2.8-win32-u ...

  2. tensorflow学习笔记二:入门基础 好教程 可用

    http://www.cnblogs.com/denny402/p/5852083.html tensorflow学习笔记二:入门基础   TensorFlow用张量这种数据结构来表示所有的数据.用一 ...

  3. tensorflow学习笔记——使用TensorFlow操作MNIST数据(2)

    tensorflow学习笔记——使用TensorFlow操作MNIST数据(1) 一:神经网络知识点整理 1.1,多层:使用多层权重,例如多层全连接方式 以下定义了三个隐藏层的全连接方式的神经网络样例 ...

  4. tensorflow学习笔记——使用TensorFlow操作MNIST数据(1)

    续集请点击我:tensorflow学习笔记——使用TensorFlow操作MNIST数据(2) 本节开始学习使用tensorflow教程,当然从最简单的MNIST开始.这怎么说呢,就好比编程入门有He ...

  5. 【pycharm】pycharm上安装tensorflow,报错:AttributeError: module 'pip' has no attribute 'main' 解决方法

    pycharm上安装tensorflow,报错:AttributeError: module 'pip' has no attribute 'main' 解决方法 解决方法: 在pycharm的安装目 ...

  6. PHP开发中常见的安全问题详解和解决方法(如Sql注入、CSRF、Xss、CC等

    页面导航: 首页 → 网络编程 → PHP编程 → php技巧 → 正文内容 PHP安全 PHP开发中常见的安全问题详解和解决方法(如Sql注入.CSRF.Xss.CC等) 作者: 字体:[增加 减小 ...

  7. C# 中DataGridView和ListView闪烁问题的解决方法

    C# 中DataGridView和ListView闪烁问题的解决方法 方法一首先定义类,将此类放在datagridview或ListView所在的窗体类外面,然后代码如下, <span styl ...

  8. Eclipse笔记-sun.misc.BASE64Encoder找不到jar包的解决方法

    从SVN检出新项目,在Eclipse中报错如下: 转: Eclipse笔记-sun.misc.BASE64Encoder找不到jar包的解决方法 2018-01-04 00:36:20 雨临Lewis ...

  9. WAMP中phpMyAdmin登陆不了问题的解决方法

    WAMP中phpMyAdmin登陆不了问题的解决方法

随机推荐

  1. Hyper-V Centos7 虚拟机固定IP

    在网上看到很多篇文章,自己也去试验过,结果实现的效果都不是很理想,并不是自己所需要的,下面是我自己研究,最后成功的经验,希望能够帮到大家.少走一些弯路. 需求 1.无论物理机的网络环境怎么变化,都需要 ...

  2. 1、Java语言概述与开发环境——JDK的安装与环境变量的配置

    Selenium.Appium.Macaca.RobotFramework.Jmeter等框架或工具均必须的一样东西——JDK,也就是基于java开发的东西都要这个东西.JDK的概念在这里不作描述. ...

  3. tensorflow学习笔记五----------逻辑回归

    在逻辑回归中使用mnist数据集.导入相应的包以及数据集. import numpy as np import tensorflow as tf import matplotlib.pyplot as ...

  4. C++关于erase的复杂度(转载)

    被这个问题困扰了很多次,有必要整理一下. 当然最好的参考资料就是http://www.cplusplus.com/reference/set/set/erase/ 里的Complexcity部分了,但 ...

  5. 01分数规划问题(二分法与Dinkelbach算法)

    链接 前置技能 二分思想 最短路算法 一些数学脑细胞? 问题模型1基本01分数规划问题给定n个二元组(valuei,costi),valuei是选择此二元组获得的价值(非负),costi是选择此二元组 ...

  6. 剑指offer-动态规划-贪心算法--剪绳子-python

    题目描述 给你一根长度为n的绳子,请把绳子剪成m段(m.n都是整数,n>1并且m>1),每段绳子的长度记为k[0],k[1],...,k[m].请问k[0]xk[1]x...xk[m]可能 ...

  7. js的抖动及防抖和节流

     js的抖动 在 js 中 改变窗口大小 & 上下滚动滚动条 & 反复向输入框中输入内容 ... , 如果绑定了相应的事件 , 这些事件的触发频率非常高, 严重影响用户体验和服务器的性 ...

  8. 轮播图--js课程

    <!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF-8&quo ...

  9. Python 通过wmi获取Window服务器硬件信息

    通过pip install wmi安装wmi 查看cpu序列号: wmic cpu get processorid 查看主板序列号: wmic baseboard get serialnumber 查 ...

  10. apachectl 命令详解-graceful 不中断原有连接,重新启动 Apache 服务器

    apachectl(Apache control interface) 参         数: fullstatus     显示服务器完整的状态信息. graceful     重新启动 Apac ...