题目链接:https://www.lydsy.com/JudgeOnline/problem.php?id=1047

题目虽然有一个n的限制,但求二维区间最值首先想到的还是RMQ,但是如果按照往常RMQ的写法,空间复杂度是O(n2*(log2(n)2)),而且需要两个求最大最小,所以会爆空间,大概也会T,233。

所以这个时候发现n还是蛮重要的,dp[i][j]表示以点(i,j)为左上角,(i+(1<<(log2(n)-1)),j+(1<<(log2(n)-1)))为右下角的矩形区域内的最值。

如果不好理解可以在开一维k,即dp[i][j][k]表示以点(i,j)为左上角,(i+(1<<(k-1)),j+(1<<(k-1)))为右下角的矩形区域最值。

这样预处理之后枚举左上角,可以做到O(1)查询区间最值。

 #include<bits/stdc++.h>
using namespace std;
typedef long long ll;
const int maxn = ;
const int inf = 2e9;
int dpM[maxn][maxn];
int dpm[maxn][maxn];
int logk;
int query(int x, int y, int k) {
int w = k - ( << logk);
int Max = max(max(dpM[x][y], dpM[x + w][y + w]), max(dpM[x + w][y], dpM[x][y + w]));
int Min = min(min(dpm[x][y], dpm[x + w][y + w]), min(dpm[x + w][y], dpm[x][y + w]));
return Max - Min;
}
int main() {
int n, m, k, x;
scanf("%d%d%d", &n, &m, &k);
for (int i = ; i <= n; ++i)
for (int j = ; j <= m; ++j) {
scanf("%d", &x);
dpM[i][j] = dpm[i][j] = x;
}
logk = log2(k);
for (int t = ; t < logk; t++) {
for (int i = ; i + ( << t) <= n; i++) {
for (int j = ; j + ( << t) <= m; j++) {
dpM[i][j] = max(max(dpM[i][j], dpM[i + ( << t)][j + ( << t)]), max(dpM[i + ( << t)][j], dpM[i][j + ( << t)]));
dpm[i][j] = min(min(dpm[i][j], dpm[i + ( << t)][j + ( << t)]), min(dpm[i + ( << t)][j], dpm[i][j + ( << t)]));
}
}
}
int ans = inf;
for (int i = ; i <= n - k+; i++) {
for (int j = ; j <= m - k+; j++) {
ans = min(ans, query(i, j, k));
//cout << query(i, j, k) << " ";
}
}
printf("%d\n", ans);
}

[Bzoj1047][HAOI2007]理想的正方形(ST表)的更多相关文章

  1. [HAOI2007]理想的正方形 st表 || 单调队列

    ~~~题面~~~ 题解: 因为数据范围不大,而且题目要求的是正方形,所以这道题有2种解法. 1,st表. 这种解法暴力好写好理解,但是较慢.我们设st[i][j][k]表示以(i, j)为左端点,向下 ...

  2. BZOJ1047: [HAOI2007]理想的正方形 [单调队列]

    1047: [HAOI2007]理想的正方形 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 2857  Solved: 1560[Submit][St ...

  3. bzoj千题计划215:bzoj1047: [HAOI2007]理想的正方形

    http://www.lydsy.com/JudgeOnline/problem.php?id=1047 先用单调队列求出每横着n个最大值 再在里面用单调队列求出每竖着n个的最大值 这样一个位置就代表 ...

  4. BZOJ1047[HAOI2007]理想的正方形——二维ST表

    题目描述 有一个a*b的整数组成的矩阵,现请你从中找出一个n*n的正方形区域,使得该区域所有数中的最大值和最小值的差最小. 输入 第一行为3个整数,分别表示a,b,n的值第二行至第a+1行每行为b个非 ...

  5. [bzoj1047][HAOI2007]理想的正方形_动态规划_单调队列

    理想的正方形 bzoj-1047 HAOI-2007 题目大意:有一个a*b的整数组成的矩阵,现请你从中找出一个n*n的正方形区域,使得该区域所有数中的最大值和最小值的差最小. 注释:$2\le a, ...

  6. [luogu2216 HAOI2007] 理想的正方形 (2dST表 or 单调队列)

    题目描述 有一个ab的整数组成的矩阵,现请你从中找出一个nn的正方形区域,使得该区域所有数中的最大值和最小值的差最小. 输入输出格式 输入格式: 第一行为3个整数,分别表示a,b,n的值 第二行至第a ...

  7. BZOJ1047: [HAOI2007]理想的正方形

    传送门 蛤省省选果然水啊,我这种蒟蒻都能一遍A. 横向纵向维护两个单调队列,做两次求最大和最小的,总复杂度$O(NM)$ 码农题,考察代码实现能力 //BZOJ 1047 //by Cydiater ...

  8. [BZOJ1047][HAOI2007]理想的正方形(RMQ+DP)

    题意 有一个a*b的整数组成的矩阵,现请你从中找出一个n*n的正方形区域,使得该区域所有数中的最大值和最小值的差最小. 思路 RMQ求 再DP 代码 #include<cstdio> #i ...

  9. 【单调队列】bzoj1047 [HAOI2007]理想的正方形

    先把整个矩阵处理成b[n][m-K+1].c[n][m-K+1]大小的两个矩阵,分别存储每行每K个数中的最大.最小值,然后再通过b.c处理出d.e分别表示K*K大小的子矩阵中的最大.最小值即可.单调队 ...

随机推荐

  1. vue.js(13)--按键修饰符

    v-on监听事件时可添加按键修饰符 <!-- 只有在 `key` 是 `Enter` 时调用 `vm.submit()` --> <input v-on:keyup.enter=&q ...

  2. php WebService应用

    <?php header ( "Content-Type: text/html; charset=gb2312" ); /* * 指定WebService路径并初始化一个We ...

  3. 2019-8-31-dotnet-core-集成到-Mattermost-聊天工具

    title author date CreateTime categories dotnet core 集成到 Mattermost 聊天工具 lindexi 2019-08-31 16:55:58 ...

  4. R语言——ggplot2补充知识点

    案例 ggplot(head(age_data,10),aes(x=reorder(Country,age_median),y=age_median))+ geom_bar(aes(fill=Coun ...

  5. linux安装 inotify

    [root@rsync-client-inotify ~]# yum install make gcc gcc-c++ [root@rsync-client-inotify ~]# wget http ...

  6. Linux架构之NFS共享存储1

    第35章 NFS共享存储 35.1 NFS基本概述 NFS是Network File System的缩写及网络文件系统.NFS主要功能是通过局域网络让不同的主机系统之间可以共享文件或目录. 常见的文件 ...

  7. docker技术基础

    1 Linux Namespace Linux Namespaces机制提供一种资源隔离方案.PID,IPC,Network等系统资源不再是全局性的,而是属于特定的Namespace.每个Namesp ...

  8. group_by

    1.按照一个列或者多个列对数据分组 2.对每个组进行聚合操作 3. 对聚合后的结果进行判断 1. select avg(score) as score from teacher 2. select   ...

  9. spring boot构建

    1.新建Maven工程 1.File-->new-->project-->maven project 2.webapp 3.工程名称 k3 2.Maven 三个常用命令 选 项目右击 ...

  10. visual studio 编译报错:未能向文件“....csproj.FileListAbsolute.txt”写入命令行,对路径的访问被拒绝

    在网上开始查找出错的解决方法,终于找到了,原来解决方法这么简单,当初以为是权限的问题,后来发现不是权限问题,在VSS中比以前多了两个目录“bin”和“obj”,可能是有人上传的时候将这两个文件夹一起上 ...