拓展中国剩余定理

前言

记得半年前还写过关于拓展中国剩余定理的博客。。。不过那时对其理解还不是比较深刻,写的也比较乱。

于是趁学校复习之机,再来重温一下拓展中国剩余定理(以下简称ExCRT)

记得半年前还写过关于拓展中国剩余定理的博客。。。不过那时对其理解还不是比较深刻,写的也比较乱。

于是趁学校复习之机,再来重温一下拓展中国剩余定理(以下简称ExCRT)

一些理论准备

拓展欧几里得解不定方程

对于不定方程\(a*x+b*y=gcd(a,b)\),视a,b为常数,我们有一种通用的方法来求一组特解:

LL exgcd(LL a,LL b,LL &x,LL &y) {
if(b==0) { x=1,y=0; return a; }
LL d=exgcd(b,a%b,y,x);
y-=(a/b)*x;
return d;
}

注:这种方法只能求一种特解,对于求所有的解请读者自行百度。这个函数运行到最后,x,y便是一组特解,返回值为\(gcd(a,b)\)。

于是我们可以将这个方程推广为解类似于\(a*x+b*y=c\)这个不定方程,方法就是先求出方程\(a*x'+b*y'=gcd(a,b)\)的解,之后将等式两边同时乘以\(c/gcd(a,b)\)。便转换为:

\(a*x'*c/gcd(a,b)+b*y'*c/gcd(a,b)=c\),\(x=x'*c/gcd(a,b),y=y'*c/gcd(a,b)\).

而如果c并不能被\(gcd(a,b)\)整除,那么此不定方程无解

理论证明

对于同余方程:

\(\left\{\begin{matrix}x\equiv r_{1}(mod\: m_{1}) & & \\ x\equiv r_{2}(mod\: m_{2}) & & \\ ...... & & \\x\equiv r_{k}(mod\: m_{k}) \end{matrix}\right.\)

我们可以考虑\(k=2\)的情况,也就是解如下方程:

\(\left\{\begin{matrix}
x\equiv r_{1}(mod\: m_{1})\\
x\equiv r_{2}(mod\: m_{2})
\end{matrix}\right.\)

由如上方程不难转换为以下形式

\(\left\{\begin{matrix}
x=k1*m1+r1\\
x=k2*m2+r2
\end{matrix}\right.\)

将两个式子合并可以得到:

\(k1*m1-k2*m2=r2-r1\)

对于这个不定方程,我们可以使用拓展欧几里得来求解。

先解出方程\(k1'*m1-k2'*m2=gcd(m1,m2)\),于是可以得到

\(k1=k1'*(r2-r1)/gcd(m1,m2)\),代入式子\(x=k1*m1+r1\)便可以算出x的一组特解,设这个特解为\(x0\),那么可以得到通解

\(x=x0+t*lcm(m1,m2)\),于是我们便通过合并第1,2个同余式子得到了新的一个同余方程:\(x\equiv x0(mod\: lcm(m1,m2))。\)

将这个同余方程按照同样的方法与第三个同余式子合并,最后只剩下唯一一个式子\(x\equiv x_{k}(mod\: lcm(所有模数m_{i}))\)。

此时的答案便可以得出最小的答案。

代码实现

LL ExCRT() {
LL M=m[1],R=r[1];
//方便 理解代码的话
//m可以看作上述x0,R可以看作lcm(m1,m2)
for(LL i=2,d,x,y;i<=n;i++) {
d=exgcd(M,m[i],x,y);//d为最大公约数
if((R-r[i])%d) return -1;//无解的情况
x=x*(R-r[i])/d%m[i];
R-=x*M;
M=M/d*m[i];
R%=M;
}
return (R%M+M)%M;//最小的正整数解
}

写在后面

现在发现。。。ExCRT好简单

C++实现,拓展中国剩余定理——解同余方程组(理论证明和代码实现)的更多相关文章

  1. 拓展中国剩余定理(exCRT)摘要

    清除一个误区 虽然中国剩余定理和拓展中国剩余定理只差两个字,但他俩的解法相差十万八千里,所以会不会CRT无所谓 用途 求类似$$\begin{cases}x \equiv b_{1}\pmod{a_{ ...

  2. E - Two Arithmetic Progressions(CodeForces - 710D)(拓展中国剩余定理)

    You are given two arithmetic progressions: a1k + b1 and a2l + b2. Find the number of integers x such ...

  3. 拓展中国剩余定理(ex_crt)

    一般来讲,crt(中国剩余定理)比较常见,而ex_crt(拓展中国剩余定理)不是很常用 但是noi 2018偏偏考了这么个诡异的东西... 所以这里写一个ex_crt模板 模型: 求一个x满足上述方程 ...

  4. poj2947(高斯消元法解同余方程组)

    题目链接:https://vjudge.net/problem/POJ-2065 题意:题目看着较复杂,实际上就是给了n个同余方程,解n个未知数. 思路:套高斯消元法的模板即可. AC代码: #inc ...

  5. (模板)poj2947(高斯消元法解同余方程组)

    题目链接:https://vjudge.net/problem/POJ-2947 题意:转换题意后就是已知m个同余方程,求n个变量. 思路: 值得学习的是这个模板里消元用到lcm的那一块.注意题目输出 ...

  6. luogu4777[模板]拓展中国剩余定理题解

    题目链接 https://www.luogu.org/problemnew/show/P4777 分析 扩展\(CRT\)就是解决模数不互质的情况,说是扩展\(CRT\),其实都是扩欧... 先来考虑 ...

  7. 2019牛客暑期多校训练营(第十场) Han Xin and His Troop (高精度+拓展中国剩余定理)

    题意 裸题 思路 题中的模数之间并不互质,所以应该用拓展中国剩余定理. 但是交上去会炸,__int128过不了,所以用高精度的板子或者java大数都挺好过的. 这里推荐java大数,因为高精度板子用起 ...

  8. poj 2947 Widget Factory (高斯消元解同余方程组+判断无解、多解)

    http://poj.org/problem?id=2947 血泪史: CE:poj的string类型要加string库,swap不能直接交换数组 WA: x[m-1]也有可能<3啊O(≧口≦) ...

  9. hdu 5755 Gambler Bo (高斯消元法解同余方程组)

    http://acm.hdu.edu.cn/showproblem.php?pid=5755 题意: n*m矩阵,每个格有数字0/1/2 每选择一个格子,这个格子+2,4方向相邻格子+1 如何选择格子 ...

随机推荐

  1. mirror - 映射在远端节点上的档案

    总览 SYNOPSIS mirror [flags] -gsite:pathname mirror [flags] [package-files] 描述 DESCRIPTION Mirror 是以 P ...

  2. js emoji 过滤

    function filteremoji(emojireg){ var ranges = [ '\ud83c[\udf00-\udfff]', '\ud83d[\udc00-\ude4f]', '\u ...

  3. C语言对传入参数的处理

    /* Loop through argv parsing options. */    while ((c = getopt(argc, argv, ":f:a:l:h")) != ...

  4. QueryDSL通用查询框架学习目录

    转载自恒宇的博客 https://www.jianshu.com/p/99a5ec5c3bd5

  5. Maven Pom文件标签详解

    <span style="padding:0px; margin:0px"><project xmlns="http://maven.apache.or ...

  6. Spring Boot日志处理

    2.4 日志处理 2.4.1 记录日志内容 请求url 访问者ip 调用方法classMethod 参数args 返回内容 2.4.2 新建包aspect,新建日志切面处理类 package com. ...

  7. mysql 连接1251错误

    问题: 解决方案: 使用管理员权限打开cmd执行以下命令: mysql -u root p use mysql alter user root@localhost identified with my ...

  8. 【leetcode】All Paths From Source to Target

    题目如下: Given a directed, acyclic graph of N nodes. Find all possible paths from node 0 to node N-1, a ...

  9. OmniGraffle 7使用的探索

    进去后可以将界面简化为4个主要区域:工具栏.工具栏.检查器和画布. 1.画布是在项目中创建.编辑和移动对象的地方 2.删除画布  选择编辑 画布删除画布 3.OmniGraffle项目至少需要一个画布 ...

  10. a标签禁止跳转

    方法一: <a href="javascipt:void(0)>....</a>