[Luogu2600]合并神犇

题目背景

loidc来到了NOI的赛场上,他在那里看到了好多神犇。

题目描述

神犇们现在正排成一排在刷题。每个神犇都有一个能力值p[i]。loidc认为坐在附近的金牌爷能力参差不齐非常难受。于是loidc便想方设法对神犇们进行人道主义合并。

loidc想把神犇的能力值排列成从左到右单调不减。他每次可以选择一个神犇,把他合并到两侧相邻的神犇上。合并后的新神犇能力值是以前两位犇的能力值之和。每次合并完成后,被合并的两个神犇就会消失。合并后的新神犇不能再分开(万一他俩有女朋友咋办)因此每次合并后神犇的总数会减1.

loidc想知道,想治好他的强迫症需要合并多少次

输入输出格式

输入格式:

第一行一个整数 n。

第二行 n 个整数,第 i 个整数表示 p[i]。

输出格式:

loidc需要合并的次数

输入输出样例

输入样例#1:

8

1 9 9 4 1 2 2 9

输出样例#1:

3

说明

对于 50%的数据,0< n <=5000。

对于 100%的数据,0< n <=200000,0< p[i] <=2147483647,p 均为随机生成。

乍一眼看题很容易错想成贪心,将序列一直合并到当前满足条件。

但是我们考虑这样一组数据4 1 3 2 6.....

如果按照我们贪心的思想,合并后的序列会变成4 4 8

但实际上我们考虑序列4 6 6 同样可以从原序列用一样的步骤合并来,而6<8,显然对于后面序列的影响更小。

所以这个贪心是错误的。

想到dp,用\(dp[i]\)表示合并到\(i\)需用的最小次数,因为从前面的状态状态转移过来,而数据不满足我们用\(O(n^2)\)做,由前面的错误贪心我们可以得知,我们要合并到比下一个数小,这样我们对后面的影响就更小,所以我们直接找到第一个可以更新当前状态的决策来更新即可。

最坏的时间复杂度到了\(O(n^2)\),但是数据比较水(手动滑稽),于是就顺利的A了

记得long long

#include<iostream>
#include<cstdio>
#include<cstring>
using namespace std;
#define lll long long
lll read()
{
int x=0,w=1;char ch=getchar();
while(ch<'0'||ch>'9') {if(ch=='-')w=-1;ch=getchar();}
while(ch>='0'&&ch<='9') x=(x<<3)+(x<<1)+ch-'0',ch=getchar();
return x*w;
}
lll a[200010],dp[200010],f[200010],sum[200010];
int main()
{
lll n=read();
for(lll i=1;i<=n;i++)
{
a[i]=read();
sum[i]=sum[i-1]+a[i];
}
for(lll i=1;i<=n;i++)
{
lll j;
for(j=i-1;j>=0;j--)
if(sum[i]-sum[j]>=f[j]) break;
dp[i]=dp[j]+i-j-1;
f[i]=sum[i]-sum[j];
}
cout<<dp[n];
}

[Luogu2600]合并神犇(dp,贪心)的更多相关文章

  1. 洛谷 P2300 合并神犇 解题报告

    P2300 合并神犇 题目背景 loidc来到了NOI的赛场上,他在那里看到了好多神犇. 题目描述 神犇们现在正排成一排在刷题.每个神犇都有一个能力值p[i].loidc认为坐在附近的金牌爷能力参差不 ...

  2. DP——P2300 合并神犇

    题目背景 loidc来到了NOI的赛场上,他在那里看到了好多神犇. 题目描述 神犇们现在正排成一排在刷题.每个神犇都有一个能力值p[i].loidc认为坐在附近的金牌爷能力参差不齐非常难受.于是loi ...

  3. 洛谷P2300 合并神犇

    传送门啦 分析: 刚开始读完题后感觉很懵,怎么算都不是3,结果发现题目理解错了.题目要求的是求一个不降的序列,不是递减的(发现自己好傻) 看明白题就好做了吧.经典的区间dp题,合并果子大家应该都做过, ...

  4. P2300 合并神犇

    题目链接 题意分析 首先这道题不可以使用简单的贪心来做 根据\(DP\) 我们令\(dp[i]\)表示当前到了\(i\)一共做了\(dp[i]\)次合并 \(pre[i]\)表示当前合并到了\(i\) ...

  5. 洛谷 P2300 合并神犇

    洛谷 听说这题可以\(n^2\)水过去,不过这里介绍一种\(O(n)\)的做法. \(f[i]\)为第\(1-i\)位合并的次数. \(pre[i]\)为第\(1-i\)位最末尾的数. \(j\)为满 ...

  6. DP+贪心水题合集_C++

    本文含有原创题,涉及版权利益问题,严禁转载,违者追究法律责任 本次是最后一篇免费的考试题解,以后的考试题目以及题解将会以付费的方式阅读,题目质量可以拿本次作为参考 本来半个月前就已经搞得差不多了,然后 ...

  7. LG4213 【模板】杜教筛(Sum)和 BZOJ4916 神犇和蒟蒻

    P4213 [模板]杜教筛(Sum) 题目描述 给定一个正整数$N(N\le2^{31}-1)$ 求 $$ans_1=\sum_{i=1}^n\varphi(i)$$ $$ans_2=\sum_{i= ...

  8. 【BZOJ4916】神犇和蒟蒻(杜教筛)

    [BZOJ4916]神犇和蒟蒻(杜教筛) 题面 BZOJ 求 \[\sum_{i=1}^n\mu(i^2)\ \ 和\ \sum_{i=1}^n\phi(i^2)\] 其中\[n<=10^9\] ...

  9. [BZOJ 4916]神犇和蒟蒻

    Description 很久很久以前,有一只神犇叫yzy; 很久很久之后,有一只蒟蒻叫lty; Input 请你读入一个整数N;1<=N<=1E9,A.B模1E9+7; Output 请你 ...

随机推荐

  1. UVALive 7325 Book Borders

    题目链接:https://icpcarchive.ecs.baylor.edu/index.php?option=com_onlinejudge&Itemid=8&page=show_ ...

  2. 【洛谷P4445 【AHOI2018初中组】报名签到】

    题目描述 n 位同学(编号从1 到n)同时来到体育馆报名签到,领取准考证和参赛资料.为了有序报名,这n 位同学需要按编号次序(编号为1 的同学站在最前面)从前往后排成一条直线.然而每一位同学都不喜欢拥 ...

  3. 用Vue来实现音乐播放器(五):路由配置+顶部导航栏组件开发

    路由配置 在router文件夹下的index.js中配置路由 import Vue from 'vue' import Router from 'vue-router'//配置路由前先引入组件impo ...

  4. MongoDB学习【一】—MongoDB简介和安装

    一.MongoDB简介 1.MongoDB是什么 MongoDB是一款强大.灵活.且易于扩展的通用型数据库,MongoDB 是由C++语言编写的,是一个基于分布式文件存储的开源数据库系统. 在高负载的 ...

  5. 002-Spring4 快速入门-项目搭建、基于注解的开发bean,Bean创建和装配、基于注解的开发bean,Bean初始化销毁、Bean装配,注解、Bean依赖注入

    一.项目搭建 1.项目创建 eclipse→project explorer→new→Project→Maven Project 默认配置即可创建项目 2.spring配置 <dependenc ...

  6. kafka 配置权限

    参考:https://www.cnblogs.com/huxi2b/p/10437844.html http://kafka.apache.org/documentation/#security_au ...

  7. 佳能mp288拆解步骤--绝对原创

    http://itbbs.pconline.com.cn/office/50663206.html 佳能mp288拆解步骤--绝对原创 gotobug Lv1太平洋舰队新兵 楼主 2013-10-13 ...

  8. C# 模拟登陆

    原理 我们知道,一般需要登录的网站,服务器和客户端都会有一段时间的会话保持,而这个会话保持是在登录时候建立的, 服务端和客户端都会持有这个KEY,在后续访问时,都需要核对这两个KEY是否一致. 而客户 ...

  9. Vue Router 路由守卫:完整的导航解析流程

    完整的导航解析流程 1 导航被触发. 2 在失活的组件里调用离开守卫. 3 调用全局的 beforeEach 守卫. 4 在重用的组件里调用 beforeRouteUpdate 守卫 (2.2+). ...

  10. 事件 on emit off 封装

    /* on 绑定 emit 触发 off 解绑 //存放事件 eventList = { key:val handle:[] } 1对多 on(eventName,callback); handle: ...