题目链接

该题实质上是一个树上博弈的问题。要定义四种状态——2先手必胜 1先手必败 3可输可赢 0不能控制

  • 叶子结点为先手必败态;
  • 若某结点的所有儿子都是先手必败态,则该结点为先手必胜态;
  • 若某结点的所有儿子都是先手必胜态,则该结点为先手必败态;
  • 若某结点的儿子既有先手必胜态,又有先手必败态,或者是存在不能控制态,则该状态为可输可赢;
  • 若某结点的所有儿子都是可输可赢态,则该结点为不能控制态。
  • 若某结点的儿子除了可输可赢态外还有其他状态,那么就当可输可赢态不存在。因为,不能将主导权交给对手。
#include<bits/stdc++.h>
using namespace std;
typedef long long LL;

];
int n,k;
int tot;
][];
];

void insert(char* s)
{
    ,tc;
    ;i<l;i++)
    {
        tc=s[i]-'a';
        if(!ch[x][tc])
            ch[x][tc]=++tot;
        x=ch[x][tc];
    }
}
void dfs(int x)
{
    ;
    ;i<;i++)
    {
        if(ch[x][i])
        {
            vis=;
            dfs(ch[x][i]);
            dp[x]|=dp[ch[x][i]]^;
        }
    }
    ;
}

int main()
{
    scanf("%d%d",&n,&k);
    ;i<=n;i++)
    {
        scanf("%s",ts);
        insert(ts);
    }
    dfs();
    ]==||dp[]==)
        puts("Second");
    ]==)
        puts(k&? "First":"Second");
    ]==)
        puts("First");
}

51nod 1490: 多重游戏(树上博弈)的更多相关文章

  1. 51nod_1490: 多重游戏(树上博弈)

    题目链接 该题实质上是一个树上博弈的问题.要定义四种状态--2先手必胜 1先手必败 3可输可赢 0不能控制 叶子结点为先手必胜态: 若某结点的所有儿子都是先手必败态,则该结点为先手必胜态: 若某结点的 ...

  2. 51nod 1459 迷宫游戏(dij)

    题目链接:51nod 1459 迷宫游戏 dij裸题. #include<cstdio> #include<cstring> #include<algorithm> ...

  3. 51Nod 1070 Bash游戏 V4(斐波那契博弈)

    http://www.51nod.com/onlineJudge/questionCode.html#!problemId=1070 题意: 思路: 这个是斐波那契博弈,http://blog.csd ...

  4. hihocoder1545 : 小Hi和小Ho的对弈游戏(树上博弈&nim博弈)

    描述 小Hi和小Ho经常一起结对编程,他们通过各种对弈游戏决定谁担任Driver谁担任Observer. 今天他们的对弈是在一棵有根树 T 上进行的.小Hi和小Ho轮流进行删除操作,其中小Hi先手. ...

  5. 51nod 1714:B君的游戏(博弈 sg打表)

    题目链接:https://www.51nod.com/onlineJudge/questionCode.html#!problemId=1714 nim游戏的一个变形,需要打出sg函数的表 #incl ...

  6. 51nod 1070 Bash游戏 V4 (斐波那契博弈)

    题目:传送门. 有一堆个数为n(n>=2)的石子,游戏双方轮流取石子,规则如下: 1)先手不能在第一次把所有的石子取完,至少取1颗: 2)之后每次可以取的石子数至少为1,至多为对手刚取的石子数的 ...

  7. 51nod 1066 - Bash游戏,简单博弈

    有一堆石子共有N个.A B两个人轮流拿,A先拿.每次最少拿1颗,最多拿K颗,拿到最后1颗石子的人获胜.假设A B都非常聪明,拿石子的过程中不会出现失误.给出N和K,问最后谁能赢得比赛. 例如N = 3 ...

  8. BZOJ3729Gty的游戏——阶梯博弈+巴什博弈+非旋转treap(平衡树动态维护dfs序)

    题目描述 某一天gty在与他的妹子玩游戏.妹子提出一个游戏,给定一棵有根树,每个节点有一些石子,每次可以将不多于L的石子移动到父节点,询问将某个节点的子树中的石子移动到这个节点先手是否有必胜策略.gt ...

  9. 51nod 1069 Nim游戏 + BZOJ 1022: [SHOI2008]小约翰的游戏John(Nim游戏和Anti-Nim游戏)

    首先,51nod的那道题就是最简单的尼姆博弈问题. 尼姆博弈主要就是判断奇异局势,现在我们就假设有三个石子堆,最简单的(0,n,n)就是一个奇异局势,因为无论先手怎么拿,后手总是可以在另一堆里拿走相同 ...

随机推荐

  1. vue概念

    Vue是单向数据流还是双向数据绑定? Vue是单向数据流不是双向数据绑定 Vue的双向数据绑定不过是语法糖(语法糖本质就是一种新的编码方式,并没有给语言增加新的功能.语法糖目的就是为了让代码更易读,更 ...

  2. vue子组件获取父组件的数据

  3. laravel5.6 操作数据 Eloquent ORM

    建立Users模型 <?php namespace App\Model\Eloquent\Admin; use Illuminate\Database\Eloquent\Model; class ...

  4. s6tu

    # -*- coding: utf-8 -*- # @Time : 2018/03/30 15:20 # @Author : cxa # @File : liuuchnagtu.py # @Softw ...

  5. 【春训团队赛第四场】补题 | MST上倍增 | LCA | DAG上最长路 | 思维 | 素数筛 | 找规律 | 计几 | 背包 | 并查集

    春训团队赛第四场 ID A B C D E F G H I J K L M AC O O O O O O O O O 补题 ? ? O O 传送门 题目链接(CF Gym102021) 题解链接(pd ...

  6. POJ - 3176 Cow Bowling 动态规划

    动态规划:多阶段决策问题,每步求解的问题是后面阶段问题求解的子问题,每步决策将依赖于以前步骤的决策结果.(可以用于组合优化问题) 优化原则:一个最优决策序列的任何子序列本身一定是相当于子序列初始和结束 ...

  7. VS代码自动补全功能

    VS代码自动补全功能 新建工程后,依次打开 工具>>代码段管理器>>选择C++>>点击 添加(A)...按钮 ,设置你的代码块的目录 复制以下代码并存为note.s ...

  8. C#递归加载目录树

    /// 获取目录管理信息集合 /// </summary> /// <returns></returns> public List<CatalogTree&g ...

  9. 协程分析之context上下文切换

    协程现在已经不是个新东西了,很多语言都提供了原生支持,也有很多开源的库也提供了协程支持. 最近为了要给tbox增加协程,特地研究了下各大开源协程库的实现,例如:libtask, libmill, bo ...

  10. python操作mysql之增删改查

    [insert] import MySQLdb conn = MySQLdb.connect(","08day5" ) cur = conn.cursor() #把数据放 ...