Kosaraju算法 有向图的强连通分量
有向图的强连通分量即,在有向图G中,如果两个顶点间至少存在一条路径,称两个顶点强连通(strongly connected)。如果有向图G的每两个顶点都强连通,称G是一个强连通图。非强连通图有向图的极大强连通子图,称为强连通分量(strongly connected
components)。
采用的算法是Kosaraju算法。
算法原理:对于图G,转置图(同图中的每边的方向相反)具有和原图完全一样的强连通分量。
具体实现:
1.对原图G进行深度优先遍历,记录每个节点的离开时间time[i]。
2.选择具有最晚离开时间的顶点,对反图GT进行遍历,删除能够遍历到的顶点,这些顶点构成一个强连通分量。
3.如果还有顶点没有删除,继续步骤2,否则算法结束。
贴一下看到的例图:
原图
对图进行DFS
对
逆图进行DFS得强连通分量
主要代码:
intmap[511][511];
intnmap[511][511];
intvist[501];
stack<int>S;
intN;
intDFS1( intv ) /* vistthevnode */
{
vist[v] = 1;
for ( inti = 1; i <= N; i++ )
{
if ( !vist[i] && nmap[v][i] )
DFS1( i );
}
S.push( v );
return0;
}
intDFS2( intv )
{
vist[v] = 1;
for ( inti = 1; i <= N; i++ )
{
if ( !vist[i] && map[v][i] )
DFS2( i );
}
return0;
}
intkosaraju()
{
while ( !S.empty() )
S.pop();
memset( vist, 0, sizeof(vist) );
for ( inti = 1; i <= N; i++ )
{
if ( !vist[i] )
{
DFS1( i );
}
}
intt = 0;
memset( vist, 0, sizeof(vist) );
while ( !S.empty() )
{
intv = S.top();
S.pop();
printf( "|%d|", v );
if ( !vist[v] )
{
t++;
DFS2( v );
}
}
return t;
</int>}
Kosaraju算法 有向图的强连通分量的更多相关文章
- poj2186Popular Cows(Kosaraju算法--有向图的强连通分量的分解)
/* 题目大意:有N个cows, M个关系 a->b 表示 a认为b popular:如果还有b->c, 那么就会有a->c 问最终有多少个cows被其他所有cows认为是popul ...
- 『Tarjan算法 有向图的强连通分量』
有向图的强连通分量 定义:在有向图\(G\)中,如果两个顶点\(v_i,v_j\)间\((v_i>v_j)\)有一条从\(v_i\)到\(v_j\)的有向路径,同时还有一条从\(v_j\)到\( ...
- 图论-求有向图的强连通分量(Kosaraju算法)
求有向图的强连通分量 Kosaraju算法可以求出有向图中的强连通分量个数,并且对分属于不同强连通分量的点进行标记. (1) 第一次对图G进行DFS遍历,并在遍历过程中,记录每一个点的退出顺序 ...
- Tarjan算法初探 (1):Tarjan如何求有向图的强连通分量
在此大概讲一下初学Tarjan算法的领悟( QwQ) Tarjan算法 是图论的非常经典的算法 可以用来寻找有向图中的强连通分量 与此同时也可以通过寻找图中的强连通分量来进行缩点 首先给出强连通分量的 ...
- 【有向图】强连通分量-Tarjan算法
好久没写博客了(都怪作业太多,绝对不是我玩的太嗨了) 所以今天要写的是一个高大上的东西:强连通 首先,是一些强连通相关的定义 //来自度娘 1.强连通图(Strongly Connected Grap ...
- Tarjan算法 求 有向图的强连通分量
百度百科 https://baike.baidu.com/item/tarjan%E7%AE%97%E6%B3%95/10687825?fr=aladdin 参考博文 http://blog.csdn ...
- [有向图的强连通分量][Tarjan算法]
https://www.byvoid.com/blog/scc-tarjan 主要思想 Tarjan算法是基于对图深度优先搜索的算法,每个强连通分量为搜索树中的一棵子树.搜索时,把当前搜索树中未处理的 ...
- Tarjan算法求出强连通分量(包含若干个节点)
[功能] Tarjan算法的用途之一是,求一个有向图G=(V,E)里极大强连通分量.强连通分量是指有向图G里顶点间能互相到达的子图.而如果一个强连通分量已经没有被其它强通分量完全包含的话,那么这个强连 ...
- UVA247- Calling Circles(有向图的强连通分量)
题目链接 题意: 给定一张有向图.找出全部强连通分量,并输出. 思路:有向图的强连通分量用Tarjan算法,然后用map映射,便于输出,注意输出格式. 代码: #include <iostrea ...
随机推荐
- 正确重写hashCode方法
https://blog.csdn.net/HD243608836/article/details/87367763 到这里,对象写完了,开始描述问题. 计算hashCode的注意事项: 1.不能包含 ...
- git-bash下, 启动sshd
今天发现git-shell下居然有sshd.exe, 尝试了一下,居然起来了.在windiwos下起sshd也是如此简单. #先编辑C:\Program Files (x86)\Git\etc\ssh ...
- 错误消息对话框QErrorMessage
继承于 QDialog 样式: 这个复选框的作用:文本框中相同信息时是否再显示 import sys from PyQt5.QtWidgets import QApplication, QWi ...
- 一个错误导致懂了mac系统的PATH环境变量
一个完全不懂mac系统的强迫症小白,由于搭建环境都按照百度走,所以在执行命令echo $PATH查看PATH内容时发现怎么有这样一串东西 /usr/local/bin:/usr/bin:/bin:/u ...
- ajax请求成功,但是进入error
ajax请求成功,这是因为json数据没有严格按json格式返回
- Spring5最新完整教程IDEA版【通俗易懂2019.11月】
1.Maven找包: spring-webmvc spring-jdbc 2.Spring的本质是控制反转,依靠依赖注入来实现.以一个servcie对象为例,即是service暴露注入接口(构造,se ...
- sass、less中的scoped属性
1.scoped 的实现原理 Vue中的Less 中的 scoped 属性的效果主要是通过 PostCss 实现的.代码示例: //编译前 <template> <div class ...
- apiCloud通过ajax获取数据
<!doctype html> <html> <head> <meta charset="utf-8"> <meta name ...
- 【学习心得】Link-cut Tree
Link-cut Tree是一种支持改变树(森林)的形态(link和cut),同时维护树的路径上节点信息的数据结构.lct通过splay来维护每次的perferred path,说白了就是一个动态的树 ...
- [CSP-S模拟测试]:礼物(数学)
题目传送门(内部题80) 输入格式 第一行输入一个正整数$n$. 第二行到第$n+1$行每行两个正整数$a_i$和$b_i$表示第$i$个礼物中包含$a_i$个红宝石和$b_i$个绿宝石. 输出格式 ...