Codeforces Paths and Trees
Paths and Trees
time limit per test3 seconds
memory limit per test256 megabytes
Little girl Susie accidentally found her elder brother's notebook. She has many things to do, more important than solving problems, but she found this problem too interesting, so she wanted to know its solution and decided to ask you about it. So, the problem statement is as follows.
Let's assume that we are given a connected weighted undirected graph G = (V, E) (here V is the set of vertices, E is the set of edges). The shortest-path tree from vertex u is such graph G1 = (V, E1) that is a tree with the set of edges E1 that is the subset of the set of edges of the initial graph E, and the lengths of the shortest paths from u to any vertex to G and to G1 are the same.
You are given a connected weighted undirected graph G and vertex u. Your task is to find the shortest-path tree of the given graph from vertex u, the total weight of whose edges is minimum possible.
Input
The first line contains two numbers, n and m (1 ≤ n ≤ 3·105, 0 ≤ m ≤ 3·105) — the number of vertices and edges of the graph, respectively.
Next m lines contain three integers each, representing an edge — ui, vi, wi — the numbers of vertices connected by an edge and the weight of the edge (ui ≠ vi, 1 ≤ wi ≤ 109). It is guaranteed that graph is connected and that there is no more than one edge between any pair of vertices.
The last line of the input contains integer u (1 ≤ u ≤ n) — the number of the start vertex.
Output
In the first line print the minimum total weight of the edges of the tree.
In the next line print the indices of the edges that are included in the tree, separated by spaces. The edges are numbered starting from 1 in the order they follow in the input. You may print the numbers of the edges in any order.
If there are multiple answers, print any of them.
Examples
input
3 3
1 2 1
2 3 1
1 3 2
3
output
2
1 2
input
4 4
1 2 1
2 3 1
3 4 1
4 1 2
4
output
4
2 3 4
Note
In the first sample there are two possible shortest path trees:
with edges 1 – 3 and 2 – 3 (the total weight is 3);
with edges 1 – 2 and 2 – 3 (the total weight is 2);
And, for example, a tree with edges 1 – 2 and 1 – 3 won't be a shortest path tree for vertex 3, because the distance from vertex 3 to vertex 2 in this tree equals 3, and in the original graph it is 1.
题目大概意思就是给定 n 个点, m 条边的无向图和一个点 u,找出若干条边组成一个子图,要求这个子图中 u 到其他点的最短距离与在原图中的相等,并且要求子图所有边的权重和最小,求出最小值。
显然要先跑一次最短路。。。
然后你想一下对于一个点,只要有一条边从一个近一点的点能够转移过来构成他的最短路就够了。。。所以就贪心就好了,找一个最短的边保证可以就好了。。。
#include<bits/stdc++.h>
using namespace std;
const int maxn = 3e5 + 5;
struct lpl{
int to, dis, num;
}lin;
struct ld{
int num;
long long dis;
}node[maxn];
vector<lpl> point[maxn];
int n, m, s;
long long ans, dis[maxn];
bool vis[maxn];
queue<int> q;
inline void putit()
{
scanf("%d%d", &n, &m);
for(int a, b, i = 1; i <= m; ++i){
scanf("%d%d%d", &a, &b, &lin.dis); lin.num = i;
lin.to = b; point[a].push_back(lin);
lin.to = a; point[b].push_back(lin);
}
scanf("%d", &s);
}
inline void spfa()
{
int now, qwe; memset(dis, 0x3f, sizeof(dis)); dis[s] = 0; q.push(s);
while(!q.empty()){
now = q.front(); q.pop(); vis[now] = false;
for(int i = point[now].size() - 1; i >= 0; --i){
qwe = point[now][i].to;
if(dis[qwe] > dis[now] + point[now][i].dis){
dis[qwe] = dis[now] + point[now][i].dis;
if(!vis[qwe]){vis[qwe] = true; q.push(qwe);}
}
}
}
}
inline bool cmp(ld A, ld B){return A.dis < B.dis;}
inline void workk()
{
for(int i = 1; i <= n; ++i){node[i].num = i; node[i].dis = dis[i];}
sort(node + 1, node + n + 1, cmp);
int t, now, qwe, num;
for(int i = 1; i <= n; ++i){
t = node[i].num; if(t == s) continue;
qwe = 2e9;
for(int j = point[t].size() - 1; j >= 0; --j){
now = point[t][j].to;
if(dis[now] + point[t][j].dis != dis[t]) continue;
if(point[t][j].dis < qwe){
qwe = point[t][j].dis; num = point[t][j].num;
}
}
ans += qwe; vis[num] = true;
}
}
inline void print()
{
cout << ans << endl;
for(int i = 1; i <= m; ++i)
if(vis[i]) printf("%d ", i);
}
int main()
{
putit();
spfa();
workk();
print();
return 0;
}
Codeforces Paths and Trees的更多相关文章
- Codeforces 545E. Paths and Trees 最短路
E. Paths and Trees time limit per test: 3 seconds memory limit per test: 256 megabytes input: standa ...
- Codeforces Round #303 (Div. 2) E. Paths and Trees 最短路+贪心
题目链接: 题目 E. Paths and Trees time limit per test 3 seconds memory limit per test 256 megabytes inputs ...
- Codeforces Round #303 (Div. 2)E. Paths and Trees 最短路
E. Paths and Trees time limit per test 3 seconds memory limit per test 256 megabytes input standard ...
- Codeforces Round #303 (Div. 2) E. Paths and Trees Dijkstra堆优化+贪心(!!!)
E. Paths and Trees time limit per test 3 seconds memory limit per test 256 megabytes input standard ...
- codeforces 545E E. Paths and Trees(单源最短路+总权重最小)
E. Paths and Trees time limit per test:3 seconds memory limit per test:256 megabytes input:standard ...
- [Codeforces 545E] Paths and Trees
[题目链接] https://codeforces.com/contest/545/problem/E [算法] 首先求 u 到所有结点的最短路 记录每个节点最短路径上的最后一条边 答 ...
- Codeforces Round #303 (Div. 2)(CF545) E Paths and Trees(最短路+贪心)
题意 求一个生成树,使得任意点到源点的最短路等于原图中的最短路.再让这个生成树边权和最小. http://codeforces.com/contest/545/problem/E 思路 先Dijkst ...
- 「日常训练」Paths and Trees(Codeforces Round 301 Div.2 E)
题意与分析 题意是这样的,定义一个从某点出发的所有最短路方案中,选择边权和最小的最短路方案,称为最短生成树. 现在求一棵最短生成树,输出总边权和与选取边的编号. 我们首先要明白这样一个结论:对一个图求 ...
- Codeforces 545E. Paths and Trees[最短路+贪心]
[题目大意] 题目将从某点出发的所有最短路方案中,选择边权和最小的最短路方案,称为最短生成树. 题目要求一颗最短生成树,输出总边权和与选取边的编号.[题意分析] 比如下面的数据: 5 5 1 2 2 ...
随机推荐
- ToolStripComboBox 绑定数据
//添加ComboBox tcbbQueryCondition.ComboBox.DataSource = RelationalOperators.GetAllOperators(); tcbbQue ...
- elasticsearch 基础 —— Common Terms Query常用术语查询
常用术语查询 该common术语查询是一个现代的替代提高了精确度和搜索结果的召回(采取禁用词进去),在不牺牲性能的禁用词. 问题 查询中的每个术语都有成本.搜索"The brown fox& ...
- 框架frameset
转自: http://www.cnblogs.com/sunfeiwto/archive////.html <FRAMESET> <FRAME> <NOFRAMES> ...
- post请求中的参数形式和form-data提交数据时取不到的问题
@Controller页面form表单请求时不会丢数据返回json数据时需要加 注解@ResponseBody请求格式如下 @ResponseBody public Object login(Sign ...
- rsync之expect脚本shell
r_expect.sh: #!/bin/expect -f set timeout 30 #spawn rsync -avz --delete --exclude-from=exclude.list ...
- mysql的锁
前言 mysql锁的概念参考如下连接: 1.http://blog.csdn.net/u013063153/article/details/53432468 2.http://www.yesky.co ...
- Centos 安装.NET Core环境
https://dotnet.microsoft.com/learn/dotnet/hello-world-tutorial/install 一.概述 本篇讨论如何把项目发布到Linux环境,主要包括 ...
- Codeforces Round #518 (Div. 1) Computer Game 倍增+矩阵快速幂
接近于死亡的选手没有水平更博客,所以现在每五个月更一篇. 这道题呢,首先如果已经有权限升级了,那么后面肯定全部选的是 \(p_ib_i\) 最高的. 设这个值为 \(M=\max \limits_i ...
- 使用字符流(Writer、Reader)完成对文件的读写操作
字符流 字符输出流:Writer,对文件的操作使用子类FileWriter 字符输入流:Reader,对文件的操作使用子类FileReader 每次操作的是一个字符 文件字符操作流会自带缓存,默认大小 ...
- https 配置
参考:https://www.cnblogs.com/tanghuachun/p/9951849.html 1.将pfx文件拷贝到application.properties同级目录下 2.添加配置文 ...