Paths and Trees

time limit per test3 seconds

memory limit per test256 megabytes

Little girl Susie accidentally found her elder brother's notebook. She has many things to do, more important than solving problems, but she found this problem too interesting, so she wanted to know its solution and decided to ask you about it. So, the problem statement is as follows.

Let's assume that we are given a connected weighted undirected graph G = (V, E) (here V is the set of vertices, E is the set of edges). The shortest-path tree from vertex u is such graph G1 = (V, E1) that is a tree with the set of edges E1 that is the subset of the set of edges of the initial graph E, and the lengths of the shortest paths from u to any vertex to G and to G1 are the same.

You are given a connected weighted undirected graph G and vertex u. Your task is to find the shortest-path tree of the given graph from vertex u, the total weight of whose edges is minimum possible.

Input

The first line contains two numbers, n and m (1 ≤ n ≤ 3·105, 0 ≤ m ≤ 3·105) — the number of vertices and edges of the graph, respectively.

Next m lines contain three integers each, representing an edge — ui, vi, wi — the numbers of vertices connected by an edge and the weight of the edge (ui ≠ vi, 1 ≤ wi ≤ 109). It is guaranteed that graph is connected and that there is no more than one edge between any pair of vertices.

The last line of the input contains integer u (1 ≤ u ≤ n) — the number of the start vertex.

Output

In the first line print the minimum total weight of the edges of the tree.

In the next line print the indices of the edges that are included in the tree, separated by spaces. The edges are numbered starting from 1 in the order they follow in the input. You may print the numbers of the edges in any order.

If there are multiple answers, print any of them.

Examples

input

3 3

1 2 1

2 3 1

1 3 2

3

output

2

1 2

input

4 4

1 2 1

2 3 1

3 4 1

4 1 2

4

output

4

2 3 4

Note

In the first sample there are two possible shortest path trees:

with edges 1 – 3 and 2 – 3 (the total weight is 3);

with edges 1 – 2 and 2 – 3 (the total weight is 2);

And, for example, a tree with edges 1 – 2 and 1 – 3 won't be a shortest path tree for vertex 3, because the distance from vertex 3 to vertex 2 in this tree equals 3, and in the original graph it is 1.





题目大概意思就是给定 n 个点, m 条边的无向图和一个点 u,找出若干条边组成一个子图,要求这个子图中 u 到其他点的最短距离与在原图中的相等,并且要求子图所有边的权重和最小,求出最小值。

显然要先跑一次最短路。。。

然后你想一下对于一个点,只要有一条边从一个近一点的点能够转移过来构成他的最短路就够了。。。所以就贪心就好了,找一个最短的边保证可以就好了。。。


#include<bits/stdc++.h>
using namespace std;
const int maxn = 3e5 + 5;
struct lpl{
int to, dis, num;
}lin;
struct ld{
int num;
long long dis;
}node[maxn];
vector<lpl> point[maxn];
int n, m, s;
long long ans, dis[maxn];
bool vis[maxn];
queue<int> q; inline void putit()
{
scanf("%d%d", &n, &m);
for(int a, b, i = 1; i <= m; ++i){
scanf("%d%d%d", &a, &b, &lin.dis); lin.num = i;
lin.to = b; point[a].push_back(lin);
lin.to = a; point[b].push_back(lin);
}
scanf("%d", &s);
} inline void spfa()
{
int now, qwe; memset(dis, 0x3f, sizeof(dis)); dis[s] = 0; q.push(s);
while(!q.empty()){
now = q.front(); q.pop(); vis[now] = false;
for(int i = point[now].size() - 1; i >= 0; --i){
qwe = point[now][i].to;
if(dis[qwe] > dis[now] + point[now][i].dis){
dis[qwe] = dis[now] + point[now][i].dis;
if(!vis[qwe]){vis[qwe] = true; q.push(qwe);}
}
}
}
} inline bool cmp(ld A, ld B){return A.dis < B.dis;} inline void workk()
{
for(int i = 1; i <= n; ++i){node[i].num = i; node[i].dis = dis[i];}
sort(node + 1, node + n + 1, cmp);
int t, now, qwe, num;
for(int i = 1; i <= n; ++i){
t = node[i].num; if(t == s) continue;
qwe = 2e9;
for(int j = point[t].size() - 1; j >= 0; --j){
now = point[t][j].to;
if(dis[now] + point[t][j].dis != dis[t]) continue;
if(point[t][j].dis < qwe){
qwe = point[t][j].dis; num = point[t][j].num;
}
}
ans += qwe; vis[num] = true;
}
} inline void print()
{
cout << ans << endl;
for(int i = 1; i <= m; ++i)
if(vis[i]) printf("%d ", i);
} int main()
{
putit();
spfa();
workk();
print();
return 0;
}

Codeforces Paths and Trees的更多相关文章

  1. Codeforces 545E. Paths and Trees 最短路

    E. Paths and Trees time limit per test: 3 seconds memory limit per test: 256 megabytes input: standa ...

  2. Codeforces Round #303 (Div. 2) E. Paths and Trees 最短路+贪心

    题目链接: 题目 E. Paths and Trees time limit per test 3 seconds memory limit per test 256 megabytes inputs ...

  3. Codeforces Round #303 (Div. 2)E. Paths and Trees 最短路

    E. Paths and Trees time limit per test 3 seconds memory limit per test 256 megabytes input standard ...

  4. Codeforces Round #303 (Div. 2) E. Paths and Trees Dijkstra堆优化+贪心(!!!)

    E. Paths and Trees time limit per test 3 seconds memory limit per test 256 megabytes input standard ...

  5. codeforces 545E E. Paths and Trees(单源最短路+总权重最小)

    E. Paths and Trees time limit per test:3 seconds memory limit per test:256 megabytes input:standard ...

  6. [Codeforces 545E] Paths and Trees

    [题目链接] https://codeforces.com/contest/545/problem/E [算法] 首先求 u 到所有结点的最短路 记录每个节点最短路径上的最后一条边         答 ...

  7. Codeforces Round #303 (Div. 2)(CF545) E Paths and Trees(最短路+贪心)

    题意 求一个生成树,使得任意点到源点的最短路等于原图中的最短路.再让这个生成树边权和最小. http://codeforces.com/contest/545/problem/E 思路 先Dijkst ...

  8. 「日常训练」Paths and Trees(Codeforces Round 301 Div.2 E)

    题意与分析 题意是这样的,定义一个从某点出发的所有最短路方案中,选择边权和最小的最短路方案,称为最短生成树. 现在求一棵最短生成树,输出总边权和与选取边的编号. 我们首先要明白这样一个结论:对一个图求 ...

  9. Codeforces 545E. Paths and Trees[最短路+贪心]

    [题目大意] 题目将从某点出发的所有最短路方案中,选择边权和最小的最短路方案,称为最短生成树. 题目要求一颗最短生成树,输出总边权和与选取边的编号.[题意分析] 比如下面的数据: 5 5 1 2 2 ...

随机推荐

  1. 2018-2-13-C#-复制列表

    title author date CreateTime categories C# 复制列表 lindexi 2018-2-13 17:23:3 +0800 2018-2-13 17:23:3 +0 ...

  2. JAVA-第一期学习(上)

    前言 果然,flag这个东西不能随便立,在我立志要学习java的第4天,我终于打开了我的eclipse.. 本章学习的内容是红框,第一期学习.真好,7月份需要学习完的东西,现在连helloworld还 ...

  3. Sass函数:random()函数

    random() 函数是用来获取一个随机数 >> random() 0.03886 >> random() 0.66527 >> random() 0.8125 & ...

  4. java this的应用

    package java04; /* * 当方法的局部变量和类的成员变量重名时,会根据“就近原则”,优先使用局部变量. * 如果需要访问奔雷中的成员变量,需要使用格式: this.成员变量名 * * ...

  5. ivew select组件 DatePicker组件的清空

    <Form ref="formInline" :model="formInline" :rules="ruleInline" inli ...

  6. String、StringBuffer、StringBuilder详解

    String类 字符串广泛应用在java编程中,String类在java.lang包中,String类是final修饰的,不能被继承,String类对象创建后不能修改,由0或多个字符组成,包含在一对双 ...

  7. NET Core SDK 已安装在VS2017不可见

    本地装了6个版本的net core sdk,但是在vs2017,vs2019 只是显示1.0和1.1: 重装,重启了好几遍也没用,没想到是环境变量PATH顺序问题,将x64的放在x86前,就OK了~:

  8. mobx学习笔记03——mobx基础语法(decorator修饰器)

    在声明阶段实现类与类成员注解的一种语法. function log(target){ const desc = Object.getOwnPropertyDescriotors(target.prot ...

  9. python每日练习

    """ 习题 1:一个列表,排重,不能用 set,也不能用字典 """ #方法一1:循环.遍历 l = [1,1,1,2,2,3,4,4,6 ...

  10. UITextfield 允许和禁止编辑

    1.enabled属性 2.resignFirstResponder,设置的时候,如果不起作用,可以延时一会儿,因为键盘升起需要时间. dispatch_after(dispatch_time(DIS ...