LUOGU P4783 【模板】矩阵求逆(高斯消元)
解题思路
用高斯消元对矩阵求逆,设\(A*B=C\),\(C\)为单位矩阵,则\(B\)为\(A\)的逆矩阵。做法是把\(B\)先设成单位矩阵,然后对\(A\)做高斯消元的过程,对\(B\)进行同样的操作,最后把\(A\)消成单位矩阵时,\(B\)就是其的逆矩阵。
代码
#include<iostream>
#include<cstdio>
#include<cstring>
#include<cstdlib>
#include<algorithm>
using namespace std;
const int N=405;
const int MOD=1e9+7;
inline int rd(){
int x=0,f=1; char ch=getchar();
while(!isdigit(ch)) f=ch=='-'?0:1,ch=getchar();
while(isdigit(ch)) x=(x<<1)+(x<<3)+ch-'0',ch=getchar();
return f?x:-x;
}
int n,a[N][N],b[N][N];
inline int fast_pow(int x,int y){
int ret=1;
for(;y;y>>=1){
if(y&1) ret=1ll*ret*x%MOD;
x=1ll*x*x%MOD;
}
return ret;
}
bool gauss(){
int tmp;
for(int i=1;i<=n;++i){
if(!a[i][i]){
for(int j=i+1;j<=n;++j)
if(a[j][i]) {
for(int k=1;k<=n;k++) swap(a[j][k],a[i][k]),swap(b[j][k],b[i][k]);
break;
}
}
if(!a[i][i]) {puts("No Solution"); return 0;}
tmp=fast_pow(a[i][i],MOD-2);
for(int j=1;j<=n;++j)
a[i][j]=1ll*a[i][j]*tmp%MOD,b[i][j]=1ll*b[i][j]*tmp%MOD;
for(register int j=1;j<=n;++j)if(j!=i){
tmp=a[j][i];
for(register int k=1;k<=n;++k)
a[j][k]=(a[j][k]-1ll*a[i][k]*tmp%MOD+MOD)%MOD,
b[j][k]=(b[j][k]-1ll*b[i][k]*tmp%MOD+MOD)%MOD;
}
}
return 1;
}
int main(){
n=rd();
for(int i=1;i<=n;i++)
for(int j=1;j<=n;j++) a[i][j]=rd();
for(int i=1;i<=n;i++) b[i][i]=1;
if(gauss()){
for(int i=1;i<=n;i++){
for(int j=1;j<=n;j++)
printf("%d ",b[i][j]);
putchar('\n');
}
}
return 0;
}
LUOGU P4783 【模板】矩阵求逆(高斯消元)的更多相关文章
- 洛谷P4783 【模板】矩阵求逆(高斯消元)
题意 题目链接 Sol 首先在原矩阵的右侧放一个单位矩阵 对左侧的矩阵高斯消元 右侧的矩阵即为逆矩阵 // luogu-judger-enable-o2 #include<bits/stdc++ ...
- luogu 3389 【模板】高斯消元
大概就是对每一行先找到最大的减小误差,然后代入消元 #include<iostream> #include<cstdio> #include<cstring> #i ...
- Luogu P3389 高斯消元
https://www.luogu.com.cn/problem/P3389 主元消元法[模板] 高斯消元是解决多元线性方程组的方法,再学习它之前,先引入一个东西--行列式 行列式的性质: 这里我们只 ...
- HDU 2827 高斯消元
模板的高斯消元.... /** @Date : 2017-09-26 18:05:03 * @FileName: HDU 2827 高斯消元.cpp * @Platform: Windows * @A ...
- Luogu4783 【模板】矩阵求逆(高斯消元)
对矩阵进行高斯消元直至消为单位矩阵,并在另一个单位矩阵上对其做同样的操作即可. 模意义下的高斯消元可以直接计算系数来避免整行的辗转相除. 还不知道有什么用. #include<iostream& ...
- 【Luogu】P3389高斯消元模板(矩阵高斯消元)
题目链接 高斯消元其实是个大模拟qwq 所以就着代码食用 首先我们读入 ;i<=n;++i) ;j<=n+;++j) scanf("%lf",&s[i][j]) ...
- 高斯消元 分析 && 模板 (转载)
转载自:http://hi.baidu.com/czyuan_acm/item/dce4e6f8a8c45f13d7ff8cda czyuan 先上模板: /* 用于求整数解得方程组. */ #inc ...
- 高斯消元模板!!!bzoj1013
/* 高斯消元模板题 n维球体确定圆心必须要用到n+1个点 设圆心坐标(x1,x2,x3,x4...xn),半径为C 设第i个点坐标为(ai1,ai2,ai3,,,ain)那么对应的方程为 (x1-a ...
- luogu P2962 [USACO09NOV]灯Lights 高斯消元
目录 题目链接 题解 题目链接 luogu P2962 [USACO09NOV]灯Lights 题解 可以折半搜索 map合并 复杂度 2^(n / 2)*logn 高斯消元后得到每个点的翻转状态 爆 ...
随机推荐
- Ajax对数据的删除与查看
1.数据库找一张表: 颜色表2.主页面主页面的代码用到tbody:TBODY作用是:可以控制表格分行下载,从而提高下载速度.(网页的打开是先表格的的内容全部下载完毕后,才显示出来,分行下载可以先显示部 ...
- postman的下载和使用
postman的下载 官网:https://www.getpostman.com/downloads/ 创建账号或者用谷歌浏览器账号登录 登录之后,进行接口测试,这里请求百度为例,然后点击send,就 ...
- init函数和匿名函数
init函数: 基本介绍: 每一个源文件都可以包含一个init函数,该函数会在main函数执行前,被Go运行框架调用,也就是说init会在main函数前被调用. 案例说明: //init函数,通常可以 ...
- mysql 主从复制 (1)
Mysql主从配置 大型网站为了软解大量的并发访问,除了在网站实现分布式负载均衡,远远不够.到了数据业务层.数据访问层,如果还是传统的数据结构,或者只是单单靠一台服务器扛,如此多的数据库连接操作,数据 ...
- webpack2.0 基本使用
webpack是一款前端模块打包工具, 它的出现是由于现代web开发越来越复杂,如果还是像原来那样把所有的js代码都写到一个文件中,维护非常困难.而解决复杂化的方法通常是分而治之,就是把复杂化的东西进 ...
- 【五一qbxt】day6 OI中的stl
from:why 很多很多part…… 1.pair: 相当于把两个变量放在一起: #include<utility> using namespace std; pair<TypeN ...
- Pandas处理缺失的数据
处理丢失数据 有两种丢失数据: None np.nan(NaN) import numpy as np import pandas from pandas import DataFrame 1. No ...
- 2019 Multi-University Training Contest 1 - 1012 - NTT
题目连接: http://acm.hdu.edu.cn/showproblem.php?pid=6589 题解连接: https://www.cnblogs.com/xusirui/p/1122945 ...
- JSTL报错Unable to read TLD "META-INF/c.tld" from JAR file "file.............................
**********菜鸟的福利^_^************ 我用的是jstl-1.2.jar,网上很多说法是删掉工程lib下面的两个jar包,那是之前的老版本,现在整合成一个了. 我出现这个问题的原 ...
- 攻防世界--getit
测试文件:https://adworld.xctf.org.cn/media/task/attachments/8ef2f7ef55c240418f84b3c514a7a28a 准备 得知 64位文件 ...