传送门

解题思路

  用高斯消元对矩阵求逆,设\(A*B=C\),\(C\)为单位矩阵,则\(B\)为\(A\)的逆矩阵。做法是把\(B\)先设成单位矩阵,然后对\(A\)做高斯消元的过程,对\(B\)进行同样的操作,最后把\(A\)消成单位矩阵时,\(B\)就是其的逆矩阵。

代码

#include<iostream>
#include<cstdio>
#include<cstring>
#include<cstdlib>
#include<algorithm> using namespace std;
const int N=405;
const int MOD=1e9+7; inline int rd(){
int x=0,f=1; char ch=getchar();
while(!isdigit(ch)) f=ch=='-'?0:1,ch=getchar();
while(isdigit(ch)) x=(x<<1)+(x<<3)+ch-'0',ch=getchar();
return f?x:-x;
} int n,a[N][N],b[N][N]; inline int fast_pow(int x,int y){
int ret=1;
for(;y;y>>=1){
if(y&1) ret=1ll*ret*x%MOD;
x=1ll*x*x%MOD;
}
return ret;
} bool gauss(){
int tmp;
for(int i=1;i<=n;++i){
if(!a[i][i]){
for(int j=i+1;j<=n;++j)
if(a[j][i]) {
for(int k=1;k<=n;k++) swap(a[j][k],a[i][k]),swap(b[j][k],b[i][k]);
break;
}
}
if(!a[i][i]) {puts("No Solution"); return 0;}
tmp=fast_pow(a[i][i],MOD-2);
for(int j=1;j<=n;++j)
a[i][j]=1ll*a[i][j]*tmp%MOD,b[i][j]=1ll*b[i][j]*tmp%MOD;
for(register int j=1;j<=n;++j)if(j!=i){
tmp=a[j][i];
for(register int k=1;k<=n;++k)
a[j][k]=(a[j][k]-1ll*a[i][k]*tmp%MOD+MOD)%MOD,
b[j][k]=(b[j][k]-1ll*b[i][k]*tmp%MOD+MOD)%MOD;
}
}
return 1;
} int main(){
n=rd();
for(int i=1;i<=n;i++)
for(int j=1;j<=n;j++) a[i][j]=rd();
for(int i=1;i<=n;i++) b[i][i]=1;
if(gauss()){
for(int i=1;i<=n;i++){
for(int j=1;j<=n;j++)
printf("%d ",b[i][j]);
putchar('\n');
}
}
return 0;
}

LUOGU P4783 【模板】矩阵求逆(高斯消元)的更多相关文章

  1. 洛谷P4783 【模板】矩阵求逆(高斯消元)

    题意 题目链接 Sol 首先在原矩阵的右侧放一个单位矩阵 对左侧的矩阵高斯消元 右侧的矩阵即为逆矩阵 // luogu-judger-enable-o2 #include<bits/stdc++ ...

  2. luogu 3389 【模板】高斯消元

    大概就是对每一行先找到最大的减小误差,然后代入消元 #include<iostream> #include<cstdio> #include<cstring> #i ...

  3. Luogu P3389 高斯消元

    https://www.luogu.com.cn/problem/P3389 主元消元法[模板] 高斯消元是解决多元线性方程组的方法,再学习它之前,先引入一个东西--行列式 行列式的性质: 这里我们只 ...

  4. HDU 2827 高斯消元

    模板的高斯消元.... /** @Date : 2017-09-26 18:05:03 * @FileName: HDU 2827 高斯消元.cpp * @Platform: Windows * @A ...

  5. Luogu4783 【模板】矩阵求逆(高斯消元)

    对矩阵进行高斯消元直至消为单位矩阵,并在另一个单位矩阵上对其做同样的操作即可. 模意义下的高斯消元可以直接计算系数来避免整行的辗转相除. 还不知道有什么用. #include<iostream& ...

  6. 【Luogu】P3389高斯消元模板(矩阵高斯消元)

    题目链接 高斯消元其实是个大模拟qwq 所以就着代码食用 首先我们读入 ;i<=n;++i) ;j<=n+;++j) scanf("%lf",&s[i][j]) ...

  7. 高斯消元 分析 && 模板 (转载)

    转载自:http://hi.baidu.com/czyuan_acm/item/dce4e6f8a8c45f13d7ff8cda czyuan 先上模板: /* 用于求整数解得方程组. */ #inc ...

  8. 高斯消元模板!!!bzoj1013

    /* 高斯消元模板题 n维球体确定圆心必须要用到n+1个点 设圆心坐标(x1,x2,x3,x4...xn),半径为C 设第i个点坐标为(ai1,ai2,ai3,,,ain)那么对应的方程为 (x1-a ...

  9. luogu P2962 [USACO09NOV]灯Lights 高斯消元

    目录 题目链接 题解 题目链接 luogu P2962 [USACO09NOV]灯Lights 题解 可以折半搜索 map合并 复杂度 2^(n / 2)*logn 高斯消元后得到每个点的翻转状态 爆 ...

随机推荐

  1. 大数据学习笔记之Zookeeper(二):Zookeeper实战篇(一)

    文章目录 2.1 本地模式安装部署 2.2 配置参数解读 2.1 本地模式安装部署 1)安装前准备: (1)安装jdk (2)通过filezilla工具拷贝zookeeper到到linux系统下 (3 ...

  2. 《JAVA设计模式》之命令模式(Command)

    在阎宏博士的<JAVA与模式>一书中开头是这样描述命令(Command)模式的: 命令模式属于对象的行为模式.命令模式又称为行动(Action)模式或交易(Transaction)模式. ...

  3. [BZOJ4151]The Cave

    Solution: ​ 假设现在在点1,有许多形如 (x, y, z) 的限制条件,那么对于一组限制,必须先走到 x, y 的 \(\frac{z-dis(x, y)}{2}\) 级祖先,叫这些点为限 ...

  4. ios overflow:scroll不顺畅解决办法

    是要在其样式里面添加这段代码就行  -webkit-overflow-scrolling: touch;

  5. hdu5943 Kingdom of Obsession 二分图+打表找规律

    题目传送门 Kingdom of Obsession Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Ja ...

  6. python 注释有哪些和作用

    python 单行注释 #作为代表 python 多行注释 ‘’‘ 这是三个单引号注释 ’‘’ “”“ 这是三个双引号注释 ”“”

  7. Linux grep常用命令

    在一个文件中同时查找多个字符串: 并集语法: grep -e 'pattern1 -e 'pattern2 file 或集语法: 1.grep -E 'pattern1|pattern2' file ...

  8. jquery的扩展,及编辑插件的书写格式

    <!DOCTYPE html><html lang="en"><head> <meta charset="UTF-8" ...

  9. go web编程——实现一个简单分页器

    在go web编程中,当需要展示的列表数据太多时,不可避免需要分页展示,可以使用Go实现一个简单分页器,提供各个数据列表展示使用.具体需求:1. 可展示“首页”和“尾页”.2. 可展示“上一页”和“下 ...

  10. 攻防世界--open-source

    1.打开源码 打开源码 #include <stdio.h> #include <string.h> int main(int argc, char *argv[]) { ) ...