题目例如以下:

Eva is trying to make her own color stripe out of a given one. She would like to keep only her favorite colors in her favorite order by cutting off those unwanted pieces and sewing the remaining parts together to form her favorite color stripe.

It is said that a normal human eye can distinguish about less than 200 different colors, so Eva's favorite colors are limited. However the original stripe could be very long, and Eva would like to have the remaining favorite stripe with the maximum length.
So she needs your help to find her the best result.

Note that the solution might not be unique, but you only have to tell her the maximum length. For example, given a stripe of colors {2 2 4 1 5 5 6 3 1 1 5 6}. If Eva's favorite colors are given in her favorite order as {2 3 1 5 6}, then she has 4 possible best
solutions {2 2 1 1 1 5 6}, {2 2 1 5 5 5 6}, {2 2 1 5 5 6 6}, and {2 2 3 1 1 5 6}.

Input Specification:

Each input file contains one test case. For each case, the first line contains a positive integer N (<=200) which is the total number of colors involved (and hence the colors are numbered from 1 to N). Then the next line starts with a positive integer M (<=200)
followed by M Eva's favorite color numbers given in her favorite order. Finally the third line starts with a positive integer L (<=10000) which is the length of the given stripe, followed by L colors on the stripe. All the numbers in a line are separated by
a space.

Output Specification:

For each test case, simply print in a line the maximum length of Eva's favorite stripe.

Sample Input:

6
5 2 3 1 5 6
12 2 2 4 1 5 5 6 3 1 1 5 6

Sample Output:

7

这道题目,依照正常的思路求解,应该使用最长公共子序列算法LCS,但与常规的LCS有所区别。常规LCS是从两个序列中按索引递增顺序,不反复的选取最大公共子列,而如今的问题是在序列B中依照A中的元素顺序可反复的找出最大子列,这样说起来比較抽象,以下举个样例,对于序列:

A={2,3,1,5,6} B={2,2,4,1,5,5,6,3,1,1,5,6}

假设是常规的LCS,我们找到的子列将会是{2,3,1,5,6},由于B全然的包括了A(不必连续)

假设是可反复的LCS。我们全然能够选择{2,2,3,1,1,5,6}。这便是变种的LCS。

对于常规的LCS(关于LCS的算法请參考算法导论390页15.4节),仅仅有A[i] = B[j]时才让当前的最大子列长度为maxLen[i-1][j-1]+1。其它情况则取maxLen[i-1][j]或者maxLen[i][j-1]中的最大值,这种算法仅仅能不反复的找出子列,假设要考虑反复,应该改动算法,不管什么情况,都取maxLen[i-1][j-1]、maxLen[i-1][j]和maxLen[i][j-1]中的最大值,假设A[i]=B[j],则在最大值的基础上+1,这样就能够处理反复的情况了。

#include <iostream>
#include <stdio.h>
#include <stdlib.h>
#include <vector> using namespace std; int maxLen[201][10001] = {0}; int main()
{
int N,M,L;
cin >> N;
cin >> M;
vector<int> like(M+1);
int num;
for(int i = 1; i <= M; i++){
scanf("%d",&num);
like[i] = num;
}
cin >> L;
vector<int> seq(L+1);
for(int i = 1; i <= L; i++){
scanf("%d",&num);
seq[i] = num;
}
int max = 0;
for(int m = 1; m <= M; m++){
for(int n = 1; n <= L; n++){
max = maxLen[m-1][n-1];
if(max < maxLen[m-1][n]) max = maxLen[m-1][n];
if(max < maxLen[m][n-1]) max = maxLen[m][n-1];
if(like[m] == seq[n]){
maxLen[m][n] = max + 1;
}else{
maxLen[m][n] = max;
}
// if(like[m] == seq[n]){
// maxLen[m][n] = maxLen[m-1][n-1] + 1;
// }else if(maxLen[m-1][n] >= maxLen[m][n-1]){
// maxLen[m][n] = maxLen[m-1][n];
// }else{
// maxLen[m][n] = maxLen[m][n-1];
// }
}
} cout << maxLen[M][L] << endl; return 0;
}

1045. Favorite Color Stripe (30) -LCS同意元素反复的更多相关文章

  1. 1045. Favorite Color Stripe (30) -LCS允许元素重复

    题目如下: Eva is trying to make her own color stripe out of a given one. She would like to keep only her ...

  2. PAT 甲级 1045 Favorite Color Stripe (30 分)(思维dp,最长有序子序列)

    1045 Favorite Color Stripe (30 分)   Eva is trying to make her own color stripe out of a given one. S ...

  3. 1045 Favorite Color Stripe (30)(30 分)

    Eva is trying to make her own color stripe out of a given one. She would like to keep only her favor ...

  4. 1045 Favorite Color Stripe (30)

    Eva is trying to make her own color stripe out of a given one. She would like to keep only her favor ...

  5. 1045 Favorite Color Stripe (30分)(简单dp)

    Eva is trying to make her own color stripe out of a given one. She would like to keep only her favor ...

  6. 【PAT甲级】1045 Favorite Color Stripe (30 分)(DP)

    题意: 输入一个正整数N(<=200),代表颜色总数,接下来输入一个正整数M(<=200),代表喜爱的颜色数量,接着输入M个正整数表示喜爱颜色的编号(同一颜色不会出现两次),接下来输入一个 ...

  7. PAT (Advanced Level) 1045. Favorite Color Stripe (30)

    最长公共子序列变形. #include<iostream> #include<cstring> #include<cmath> #include<algori ...

  8. 1045 Favorite Color Stripe 动态规划

    1045 Favorite Color Stripe 1045. Favorite Color Stripe (30)Eva is trying to make her own color strip ...

  9. PAT 1045 Favorite Color Stripe[dp][难]

    1045 Favorite Color Stripe (30)(30 分) Eva is trying to make her own color stripe out of a given one. ...

随机推荐

  1. Matlab,C++存取二进制

    1,Matlab存储二进制 load Wall.dat %读取数据,数组名为Wall fid=fopen('Wall','wb'); %打开一个文件,二进制写入 fwrite(fid,Wall','f ...

  2. HDU 1541.Stars-一维树状数组(详解)

    树状数组,学长很早之前讲过,最近才重视起来,enmmmm... 树状数组(Binary Indexed Tree(B.I.T), Fenwick Tree)是一个查询和修改复杂度都为log(n)的数据 ...

  3. 51nod 1101 换零钱 【完全背包变形/无限件可取】

    1101 换零钱  基准时间限制:1 秒 空间限制:131072 KB 分值: 20 难度:3级算法题  收藏  关注 N元钱换为零钱,有多少不同的换法?币值包括1 2 5分,1 2 5角,1 2 5 ...

  4. [Contest20180418]数学竞赛

    题意:初始时$x=0$(长度),当$x$为长度时,你可以把$x$变成$\sin^{-1}x,\cos^{-1}x,\tan^{-1}x$之一($x$变为角度),若$x$为角度,你可以把$x$变成$\s ...

  5. iOS音频的后台播放 锁屏

    初始化AudioSession和基本配置 音频播放器采用的AVPlayer ,在程序启动的时候需要配置AudioSession,AudioSession负责应用音频的设置,比如支不支持后台,打断等等, ...

  6. Spring/Spring MVC/Spring Boot实现跨域

    说明:Spring MVC和Spring Boot其实用的都是同一套. CORS介绍请看这里:https://developer.mozilla.org/zh-CN/docs/Web/HTTP/Acc ...

  7. 软路由OpenWrt教程收集(插件开发教程,opkg安装软件教程)

    说明:现在几乎所有家庭级别的路由器都是基于OpenWrt进行衍生搭建的. https://openwrt.io/(极路由HiWifi创建的开源站点,极路由系统有这个衍生而来) http://www.o ...

  8. 【视频】Linux高级程序设计01.3命令行选项及参数

    [课程笔记] [命令行参数] 选项:-l -a -i 参数:-l /home main 函数形式: int main(int argc, char *argv[]) main函数是有参数的,而且有返回 ...

  9. Android使用 SO 库时要注意的一些问题

    常和 SO 库开发打交道的同学来说已经是老生长谈,但是既然要讨论一整个动态加载系列,我想还是有必要说说使用 SO 库时的一些问题. 在项目里使用 SO 库非常简单,在 加载 SD 卡中的 SO 库 中 ...

  10. Thread.Join(int millisecondsTimeout)

    Join 就是加入的意思,也就是说新创建的线程加入到进程中,并马上执行. 看下面这段代码 Console.WriteLine("start"); Thread myTask = n ...