传送门

分析

我们不难发现这是一棵树

于是01分数规划然后树上dp即可

代码

#include<iostream>
#include<cstdio>
#include<cstring>
#include<string>
#include<algorithm>
#include<cctype>
#include<cmath>
#include<cstdlib>
#include<queue>
#include<ctime>
#include<vector>
#include<set>
#include<map>
#include<stack>
using namespace std;
int n,m;
int s[],p[],r[],siz[];
double dp[][];
vector<int>v[];
inline void go(int x,double mid){
dp[x][]=double(p[x]-s[x]*mid);
siz[x]=;
for(int i=;i<v[x].size();i++){
go(v[x][i],mid);
for(int j=siz[x];j>;j--)
for(int k=;k<=siz[v[x][i]];k++)
dp[x][j+k]=max(dp[x][j+k],dp[x][j]+dp[v[x][i]][k]);
siz[x]+=siz[v[x][i]];
}
}
inline bool ck(double mid){
memset(dp,-,sizeof(dp));
s[]=p[]=;
go(,mid);
return dp[][m+]>=;
}
signed main(){
int i,j,k;
scanf("%d%d",&m,&n);
for(i=;i<=n;i++){
scanf("%d%d%d",&s[i],&p[i],&r[i]);
v[r[i]].push_back(i);
}
double le=,ri=10000.0001;
while(ri-le>0.0001){
double mid=(le+ri)/;
if(ck(mid))le=mid;
else ri=mid;
}
printf("%0.3lf\n",le);
return ;
}

p4322 [JSOI2016]最佳团体的更多相关文章

  1. Luogu P4322 [JSOI2016]最佳团体

    JZdalao昨天上课讲的题目,话说JSOI的题目是真的不难,ZJOI的题目真的是虐啊! 题意很简单,抽象一下就是:有一棵树,一次只能选从根到某个节点上的链上的所有点,问从中取出k个节点所得到的总价值 ...

  2. LUOGU P4322 [JSOI2016]最佳团体(0/1分数规划+树形背包)

    传送门 解题思路 一道0/1分数规划+树上背包,两个应该都挺裸的,话说我常数为何如此之大..不吸氧洛谷过不了啊. 代码 #include<iostream> #include<cst ...

  3. 洛谷$P4322\ [JSOI2016]$最佳团体 二分+$dp$

    正解:二分+$dp$ 解题报告: 传送门$QwQ$ 这题长得好套路嗷,,,就一看就看出来是个$01$分数规划+树形$dp$嘛$QwQ$. 考虑现在二分的值为$mid$,若$mid\leq as$,则有 ...

  4. [JSOI2016]最佳团体 DFS序/树形DP

    题目 洛谷 P4322 [JSOI2016]最佳团体 Description 茜茜的舞蹈团队一共有\(N\)名候选人,这些候选人从\(1\)到\(N\)编号.方便起见,茜茜的编号是\(0\)号.每个候 ...

  5. BZOJ 4753 [Jsoi2016]最佳团体 | 树上背包 分数规划

    BZOJ 4753 [Jsoi2016]最佳团体 | 树上背包 分数规划 又是一道卡精度卡得我头皮发麻的题-- 题面(--蜜汁改编版) YL大哥是24OI的大哥,有一天,他想要从\(N\)个候选人中选 ...

  6. BZOJ_4753_[Jsoi2016]最佳团体_树形背包+01分数规划

    BZOJ_4753_[Jsoi2016]最佳团体_树形背包+01分数规划 Description JSOI信息学代表队一共有N名候选人,这些候选人从1到N编号.方便起见,JYY的编号是0号.每个候选人 ...

  7. BZOJ4753: [Jsoi2016]最佳团体(分数规划+树上背包)

    BZOJ4753: [Jsoi2016]最佳团体(分数规划+树上背包) 标签:题解 阅读体验 BZOJ题目链接 洛谷题目链接 具体实现 看到分数和最值,考虑分数规划 我们要求的是一个\(\dfrac{ ...

  8. 【bzoj4753】[Jsoi2016]最佳团体 分数规划+树形背包dp

    题目描述 JSOI信息学代表队一共有N名候选人,这些候选人从1到N编号.方便起见,JYY的编号是0号.每个候选人都由一位编号比他小的候选人Ri推荐.如果Ri=0则说明这个候选人是JYY自己看上的.为了 ...

  9. BZOJ.4753.[JSOI2016]最佳团体(01分数规划 树形背包DP)

    题目链接 \(Description\) 每个点有费用si与价值pi,要求选一些带根的连通块,总大小为k,使得 \(\frac{∑pi}{∑si}\) 最大 \(Solution\) 01分数规划,然 ...

随机推荐

  1. LeetCode OJ:Combinations (排列组合)

    Given two integers n and k, return all possible combinations of k numbers out of 1 ... n. For exampl ...

  2. SSL/TLS捕包分析

    一.基本概念 SSL:(Secure Socket Layer,安全套接字层),位于可靠的面向连接的网络层协议和应用层协议之间的一种协议层.SSL通过互相认证.使用数字签名确保完整性.使用加密确保私密 ...

  3. 无状态服务 VS 有状态服务

    无状态服务 VS 有状态服务 https://blog.csdn.net/mysee1989/article/details/51381435 对服务器程序来说,究竟是有状态服务,还是无状态服务,其判 ...

  4. Balanced Lineup(线段树的简单了解)

    个人心得:线段树就是将一段序列拆分为一个个单独的节点,不过每俩个节点又可以联系在一起,所以就能很好的结合,比如这一题, 每次插入的时候都将这一段区间的最大最小值更新,就能大大减少时间. 这个线段树建立 ...

  5. python函数之sorted与sort

    Python list内置sort()方法用来排序,也可以用python内置的全局sorted()方法来对可迭代的序列排序生成新的序列. sorted(iterable,key=None,revers ...

  6. BZOJ1116:[POI2008]CLO

    浅谈并查集:https://www.cnblogs.com/AKMer/p/10360090.html 题目传送门:https://lydsy.com/JudgeOnline/problem.php? ...

  7. CF gym 101933 K King's Colors —— 二项式反演

    题目:http://codeforces.com/gym/101933/problem/K 其实每个点的颜色只要和父亲不一样即可: 所以至多 i 种颜色就是 \( i * (i-1)^{n-1} \) ...

  8. 分析诊断工具之一:MYSQL性能查看(多指标)

    网上有很多的文章教怎么配置MySQL服务器,但考虑到服务器硬件配置的不同,具体应用的差别,那些文章的做法只能作为初步设置参考,我们需要根据自己的情况进行配置优化,好的做法是MySQL服务器稳定运行了一 ...

  9. java中try{}catch{}和finally{}的执行顺序问题

     今天我给大家讲解一下java的的错误和异常处理机制以及相关异常的执行顺序问题.如有不足的地方,欢迎批评指正~ 1.首相简单介绍一下java中的错误(Error)和异常(Exception) 错误和异 ...

  10. Facebook开源的JavaScript库:React

    React是Facebook开源的JavaScript库,采用声明式范例,可以传递声明代码,最大限度地减少与DOM的交互. React是Facebook开源的JavaScript库,用于构建UI.你可 ...