给定平面上的一些散点集,求最远两点距离的平方值。

题解:

旋转卡壳求出凸包,然后根据单调性,求出最远两点的最大距离

 #pragma GCC optimize(2)
#pragma G++ optimize(2)
#include<cstring>
#include<cmath>
#include<iostream>
#include<algorithm>
#include<cstdio> #define eps 0.00000001
#define N 50007
using namespace std;
inline int read()
{
int x=,f=;char ch=getchar();
while(!isdigit(ch)){if(ch=='-')f=-;ch=getchar();}
while(isdigit(ch)){x=(x<<)+(x<<)+ch-'';ch=getchar();}
return x*f;
} int n,top;
double ans; double sqr(double x){return x*x;}
struct P
{
double x,y;
P(){}
P(double _x,double _y):x(_x),y(_y){}
friend P operator+(P a,P b){return P(a.x+b.x,a.y+b.y);}
friend P operator-(P a,P b){return P(a.x-b.x,a.y-b.y);}
friend double operator*(P a,P b){return a.x*b.y-a.y*b.x;}
friend double operator/(P a,P b){return a.x*b.x+a.y*b.y;}
friend bool operator==(P a,P b){return fabs(a.x-b.x)<eps&&fabs(a.y-b.y)<eps;}
friend bool operator!=(P a,P b){return !(a==b);}
friend bool operator<(P a,P b)
{
if(fabs(a.y-b.y)<eps)return a.x<b.x;
return a.y<b.y;
}
friend double dis2(P a){return sqr(a.x)+sqr(a.y);}
friend void print(P a){printf("%.2lf %.2lf\n",a.x,a.y);}
}p[N],q[N]; bool cmp(P a,P b)
{
if(fabs((b-p[])*(a-p[]))<eps)return dis2(a-p[])<dis2(b-p[]);
return (a-p[])*(b-p[])>;//叉乘大于0,表示向左转,a的斜率更小。
}
void Graham()//选出凸包上的点。
{
for (int i=;i<=n;i++)
if(p[i]<p[])swap(p[i],p[]);
sort(p+,p+n+,cmp);
q[++top]=p[],q[++top]=p[];
for (int i=;i<=n;i++)
{
while((q[top]-q[top-])*(p[i]-q[top-])<eps&&top>)top--;//如果当前的点的斜率更小,就替换
q[++top]=p[i];
}
}
void RC()//求直径。
{
q[top+]=q[];//因为凸包是一个圈。
int now=;
for (int i=;i<=top;i++)
{
while((q[i+]-q[i])*(q[now]-q[i])<(q[i+]-q[i])*(q[now+]-q[i]))
{
now++;
if(now==top+)now=;
}
ans=max(ans,dis2(q[now]-q[i]));
}
}
int main()
{
n=read();
for (int i=;i<=n;i++)
p[i].x=read(),p[i].y=read();
Graham();
RC();
printf("%d",(int)ans);
}

POJ2187 旋转卡壳 求最长直径的更多相关文章

  1. poj 2187 Beauty Contest , 旋转卡壳求凸包的直径的平方

    旋转卡壳求凸包的直径的平方 板子题 #include<cstdio> #include<vector> #include<cmath> #include<al ...

  2. UVa 1453 - Squares 旋转卡壳求凸包直径

    旋转卡壳求凸包直径. 参考:http://www.cppblog.com/staryjy/archive/2010/09/25/101412.html #include <cstdio> ...

  3. POJ 2187 - Beauty Contest - [凸包+旋转卡壳法][凸包的直径]

    题目链接:http://poj.org/problem?id=2187 Time Limit: 3000MS Memory Limit: 65536K Description Bessie, Farm ...

  4. POJ2187(旋转卡壳)

    Beauty Contest Time Limit: 3000MS   Memory Limit: 65536K Total Submissions: 35459   Accepted: 10978 ...

  5. [hdu5251]矩形面积 旋转卡壳求最小矩形覆盖

    旋转卡壳求最小矩形覆盖的模板题. 因为最小矩形必定与凸包的一条边平行,则枚举凸包的边,通过旋转卡壳的思想去找到其他3个点,构成矩形,求出最小面积即可. #include<cstdio> # ...

  6. POJ 2079 Triangle 旋转卡壳求最大三角形

    求点集中面积最大的三角形...显然这个三角形在凸包上... 但是旋转卡壳一般都是一个点卡另一个点...这种要求三角形的情况就要枚举底边的两个点 卡另一个点了... 随着底边点的递增, 最大点显然是在以 ...

  7. POJ 2187 Beauty Contest【旋转卡壳求凸包直径】

    链接: http://poj.org/problem?id=2187 http://acm.hust.edu.cn/vjudge/contest/view.action?cid=22013#probl ...

  8. 「POJ-3608」Bridge Across Islands (旋转卡壳--求两凸包距离)

    题目链接 POJ-3608 Bridge Across Islands 题意 依次按逆时针方向给出凸包,在两个凸包小岛之间造桥,求最小距离. 题解 旋转卡壳的应用之一:求两凸包的最近距离. 找到凸包 ...

  9. bzoj1069: [SCOI2007]最大土地面积 凸包+旋转卡壳求最大四边形面积

    在某块平面土地上有N个点,你可以选择其中的任意四个点,将这片土地围起来,当然,你希望这四个点围成的多边形面积最大. 题解:先求出凸包,O(n)枚举旋转卡壳,O(n)枚举另一个点,求最大四边形面积 /* ...

随机推荐

  1. ELK+kafka日志处理

    此次使用kafka代替redis,elk集群搭建过程请参考:https://www.cnblogs.com/dmjx/p/9120474.html kafka名词解释: 1.话题(Topic):是特定 ...

  2. my share

    网盘一: username:3a1bd0f6634d72a0423aa21c7d2dee1a password:adaa0dfa36f537a4469fcc6e78823e1c 网盘二: userna ...

  3. django中的分页管理

    有时,展示的对象太多,需要对他们进行分页展示,不能一页把所有的结果都展示出来吧,那样的话,哈哈,挺逗 使用Django分页器功能 从Django中导入Paginator模块(没有的话,自行下载,我是w ...

  4. python之doctest的用法

    doctest是python自带的一个模块,你可以把它叫做“文档测试”(doctest)模块. doctest的使用有两种方式:一个是嵌入到python源中.另一个是放到一个独立文件. doctest ...

  5. linux通用GPIO驱动,写GPIO文件不立即生效问题解决

    Linux开发平台实现了通用GPIO的驱动,用户通过,SHell或者系统调用能控制GPIO的输出和读取其输入值.其属性文件均在/sys/class/gpio/目录下,该目录下有export和unexp ...

  6. B1005 继续(3n+1)猜想 (25分)

    B1005 继续(3n+1)猜想 (25分) 卡拉兹(Callatz)猜想已经在1001中给出了描述.在这个题目里,情况稍微有些复杂. 当我们验证卡拉兹猜想的时候,为了避免重复计算,可以记录下递推过程 ...

  7. [Noip2016]组合数(数论)

    题目描述 组合数表示的是从n个物品中选出m个物品的方案数.举个例子,从(1,2,3) 三个物品中选择两个物品可以有(1,2),(1,3),(2,3)这三种选择方法.根据组合数的定 义,我们可以给出计算 ...

  8. 16,Flask-Migrate

    终于到了Flask-Migrate,之前在学习Flask-SQLAlchemy的时候,Flask支持 makemigration / migrate 吗? 答案在这里该诉你,如果你同时拥有两个三方组件 ...

  9. WPF系列教程——(一)仿TIM QQ界面 - 简书

    原文:WPF系列教程--(一)仿TIM QQ界面 - 简书 TIM QQ 我们先来看一下TIM QQ长什么样,整体可以将界面分为三个部分 TIM QQ 1. 准备 阅读本文假设你已经有XAML布局的基 ...

  10. 《Cracking the Coding Interview》——第8章:面向对象设计——题目4

    2014-04-23 18:17 题目:设计一个停车位的类. 解法:停车位,就要有停车.取车的功能了.另外我还加了一个工作线程用于计费,每秒给那些有车的车位加1块钱费用. 代码: // 8.4 Des ...