Description

The police office in Tadu City decides to say ends to the chaos, as launch actions to root up the TWO gangs in the city, Gang Dragon and Gang Snake. However, the police first needs to identify which gang a criminal belongs to. The present question is, given two criminals; do they belong to a same clan? You must give your judgment based on incomplete information. (Since the gangsters are always acting secretly.)

Assume N (N <= 10^5) criminals are currently in Tadu City, numbered from 1 to N. And of course, at least one of them belongs to Gang Dragon, and the same for Gang Snake. You will be given M (M <= 10^5) messages in sequence, which are in the following two kinds:

1. D [a] [b] 
where [a] and [b] are the numbers of two criminals, and they belong to different gangs.

2. A [a] [b] 
where [a] and [b] are the numbers of two criminals. This requires you to decide whether a and b belong to a same gang. 

Input

The first line of the input contains a single integer T (1 <= T <= 20), the number of test cases. Then T cases follow. Each test case begins with a line with two integers N and M, followed by M lines each containing one message as described above.

Output

For each message "A [a] [b]" in each case, your program should give the judgment based on the information got before. The answers might be one of "In the same gang.", "In different gangs." and "Not sure yet."

Sample Input

1
5 5
A 1 2
D 1 2
A 1 2
D 2 4
A 1 4

Sample Output

Not sure yet.
In different gangs.
In the same gang.

Source

题解

并查集,如果我们有这样的关系D(a,b),D(b,c)

考虑这样存储关系 mix(a,b+n),mix(a+n,b),mix(b,c+n),mix(b+n,c)  ,通过这样的存图,我们可以得到这样的集合(a,b+n,c)和(b,a+n,c+n)因此就可以找到正确的关系

#include <cstdio>
#include <cstring>
using namespace std;
const int MAXN=1e5+10;
int pri[MAXN*2];
int find(int x)
{
if(pri[x]==x )return x;
return pri[x]=find(pri[x]);
}
void mix(int x,int y)
{
int a=find(x),b=find(y);
if(a!=b)
{
pri[a]=b;
}
}
int main()
{
int _;
scanf("%d",&_);
while(_--)
{
int n,m;
scanf("%d%d",&n,&m);
for (int i = 0; i <=n+n ; ++i) {
pri[i]=i;
}
for (int i = 0; i <m ; ++i) {
char S[2];
scanf("%s",&S);
if(S[0]=='A')
{
int x,y;
scanf("%d%d",&x,&y);
if(n==2)
{
printf("In different gangs.\n");
}
else if(find(x)==find(y))
{ printf("In the same gang.\n");
}
else if(find(x)==find(y+n))//y+n如果和x在一个集合中那么y一定和x不在一个集合中,如果直接find(x)!=find(y) 可能会有些y的关系还没有清楚
{
printf("In different gangs.\n");
}
else
{
printf("Not sure yet.\n");
} }
else if(S[0]=='D')
{
int x, y;
scanf("%d%d",&x,&y);
mix(x,y+n);
mix(x+n,y);
}
}
} return 0;
}

  

Description POJ1703的更多相关文章

  1. POJ1703(2集合并查集)

    Find them, Catch them Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 39402   Accepted: ...

  2. 完美解决CodeSmith无法获取MySQL表及列Description说明注释的方案

    问题描述: CodeSmith是现在比较实用的代码生成器,但是我们发现一个问题: 使用CodeSmith编写MySQL模板的时候,会发现一个问题:MySQL数据表中的列说明获取不到,也就是column ...

  3. 资源描述结构(Resource Description Framework,RDF)

    资源描述框架(Resource Description Framework),一种用于描述Web资源的标记语言.RDF是一个处理元数据的XML(标准通用标记语言的子集)应用,所谓元数据,就是" ...

  4. MVC中得到成员元数据的Description特性描述信息公用方法

    #region 从类型成员获取指定的Attribute T特性集合 /// <summary> /// 从类型成员获取指定的Attribute T特性集合 /// </summary ...

  5. 枚举扩展方法获取枚举Description

    枚举扩展方法 /// <summary> /// 扩展方法,获得枚举的Description /// </summary> /// <param name="v ...

  6. 什么情况下才要重写Objective-C中的description方法

    特别注意: 千万不要在description方法中同时使用%@和self,同时使用了%@和self,代表要调用self的description方法,因此最终会导致程序陷入死循环,循环调用descrip ...

  7. 启用WebApi 2里的Api描述信息(Help下的Description)

    环境:vs2013+web api 2 问题:默认情况下新建的Web Api 2项目,自带的Help页下会显示Api的相关信息,但Description那一栏无法获取到数据,如下图所示: 解决: 1. ...

  8. Description Resource Path Location Type Error executing aapt: Return code -1073741819 Client line 1

    Logcat报错:Description    Resource    Path    Location Type Error executing aapt: Return code -1073741 ...

  9. C# Enum Name String Description之间的相互转换

    最近工作中经常用到Enum中Value.String.Description之间的相互转换,特此总结一下. 1.首先定义Enum对象 public enum Weekday { [Descriptio ...

随机推荐

  1. python3线程介绍01(如何启动和调用线程)

    #!/usr/bin/env python# -*- coding:utf-8 -*- import osimport time,randomimport threading # 1-进程说明# 进程 ...

  2. mongoDB基础知识(一)

    mongoDB是一个基于分布式文件存储的数据库,介于关系型数据库和非关系型数据库之间,在非关系型数据库中功能最丰富, 最像关系型数据库.数据结构松散,类似于json的bson格式,可以存储比较复杂的数 ...

  3. IOS通讯录的隐藏标签【电话】的特殊功能(在IOS11已失效)

    这功能比较适合有强迫症,爱折腾的人哈!! 规范了通讯录标签,以后可以轻松的知道别人是用短号还是亲情网给你打电话. 如果是长号还可以显示归属地. 也许从IOS8(不太清楚)开始自带了号码归属地显示功能, ...

  4. 2017.10.28 QB模拟赛 —— 下午

    题目链接 T1 按x值排序 遇到第二种牌插入 遇到第一种牌 查询<=y 的最小值 删除他 splay multiset cys大佬说 multiset就是不去重的set, #include &l ...

  5. server 2008 64位安装Rational错误

    Administrator has detected that this is a terminal server session.Administrator does not support run ...

  6. React怎么创建.babelrc文件

    在windows环境下做react开发其实是一件非常让人头疼的事,强烈建议使用Mac或者是Linux系统,否则真的是自己挖坑自己跳了. 不过,这里还是给大家说说如何在windows环境下新建一个.ba ...

  7. cesium 加载倾斜摄影模型(这里有一坑)

    代码如下: // Construct the default list of terrain sources. var terrainModels = Cesium.createDefaultTerr ...

  8. 基于LBS的多人聊天

  9. hdu-1892 See you~---二维树状数组运用

    题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=1892 题目大意: 题目大意:有很多方格,每个方格对应的坐标为(I,J),刚开始时每个格子里有1本书, ...

  10. 【BZOJ5212】[ZJOI2018] 历史(LCT大黑题)

    点此看题面 大致题意: 给定一棵树每个节点\(Access\)的次数,求最大虚实链切换次数,带修改. 什么是\(Access\)? 推荐你先去学一学\(LCT\)吧. 初始化(不带修改的做法) 首先考 ...