Sumdiv
Time Limit: 1000MS   Memory Limit: 30000K
Total Submissions: 17039   Accepted: 4280

Description

Consider two natural numbers A and B. Let S be the sum of all natural divisors of A^B. Determine S modulo 9901 (the rest of the division of S by 9901).

Input

The only line contains the two natural numbers A and B, (0 <= A,B <= 50000000)separated by blanks.

Output

The only line of the output will contain S modulo 9901.

Sample Input

2 3

Sample Output

15
#include <iostream>
#include <stdio.h>
#include <string.h>
#include <algorithm>
#include <stdlib.h>
using namespace std;
#define MOD 9901 typedef long long ll;
//a^b%mod 快速幂
long long Quk_Mul(long long a,long long b,long long mod)
{
long long qsum=;
while(b)
{
if(b&) qsum=(qsum*a)%mod;
b>>=;
a=(a*a)%mod;
}
return qsum;
}//二分计算1+a+a^2+...+a^b long long Bin_Find(int a,long long b)
{
if(b==) return ;
if(b%==)
{
return ( Bin_Find(a, b/-)+Bin_Find(a, b/-)*Quk_Mul(a, b/+, MOD)+Quk_Mul(a, b/, MOD) )%MOD;
}
else
{
return ( Bin_Find(a, b/)+Quk_Mul(a, b/+, MOD)*Bin_Find(a, b/) )%MOD;
}
} long long GetDivsorSum(int x,int b)
{
long long sum=;
for(int i=;i*i<=x;i++)
{
long long tmp=;
if(x%i == )
{
while(x%i==)
{
x/=i;
tmp++;
}
//假设
tmp *= b;
sum *= Bin_Find(i,tmp);
sum%=MOD;
}
} if(x>)//在这里x可能等于 9901
{
long long tmp=;
tmp *= b;
int i=x;
sum *= Bin_Find(i, tmp);
sum%=MOD;
}
return sum;
} int main(int argc, const char * argv[]) {
int a,b;
// for(int i=2;i<9901;i++)
// if(9901%i==0) printf("%d\n",i);
while(scanf("%d%d",&a,&b)!=EOF)
{
if(a==)
{
printf("0\n");
}
else if(b==)
printf("1\n");
else
cout<<(GetDivsorSum(a,b)%MOD+MOD)%MOD<<endl;
/*
long long tmp=1;
long long ans=0;
for(int i=0;i<b;i++) tmp*=a;
for(int j=1;j<=tmp;j++)
{
if(tmp%j==0) ans=ans+j;
ans%=MOD;
}
cout<<ans<<endl;
*/
}
return ;
}

//求一个数的因子和。因为求逆元不是很方便,所以采用二分求等比数列和

poj1845(二分快速求等比数列模M和)的更多相关文章

  1. hdu 1005 Number Sequence(矩阵连乘+二分快速求幂)

    题目:http://acm.hdu.edu.cn/showproblem.php?pid=1005 代码: #include<iostream> #include<stdio.h&g ...

  2. 九度OJ 1085 求root(N, k) -- 二分求幂及快速幂取模

    题目地址:http://ac.jobdu.com/problem.php?pid=1085 题目描述: N<k时,root(N,k) = N,否则,root(N,k) = root(N',k). ...

  3. 二分求幂/快速幂取模运算——root(N,k)

    二分求幂 int getMi(int a,int b) { ; ) { //当二进制位k位为1时,需要累乘a的2^k次方,然后用ans保存 == ) { ans *= a; } a *= a; b / ...

  4. POJ 1845 Sumdiv [素数分解 快速幂取模 二分求和等比数列]

    传送门:http://poj.org/problem?id=1845 大致题意: 求A^B的所有约数(即因子)之和,并对其取模 9901再输出. 解题基础: 1) 整数的唯一分解定理: 任意正整数都有 ...

  5. POJ1845 数论 二分快速取余

    大致题意: 求A^B的所有约数(即因子)之和,并对其取模 9901再输出. 解题思路: 应用定理主要有三个: (1)   整数的唯一分解定理: 任意正整数都有且只有一种方式写出其素因子的乘积表达式. ...

  6. CodeForces Round #191 (327C) - Magic Five 等比数列求和的快速幂取模

    很久以前做过此类问题..就因为太久了..这题想了很久想不出..卡在推出等比的求和公式,有除法运算,无法快速幂取模... 看到了 http://blog.csdn.net/yangshuolll/art ...

  7. NYOJ--102--次方求模(快速求幂取模)

    次方求模 时间限制:1000 ms  |  内存限制:65535 KB 难度:3   描述 求a的b次方对c取余的值   输入 第一行输入一个整数n表示测试数据的组数(n<100)每组测试只有一 ...

  8. The 2018 ACM-ICPC China JiangSu Provincial Programming Contest快速幂取模及求逆元

    题目来源 The 2018 ACM-ICPC China JiangSu Provincial Programming Contest 35.4% 1000ms 65536K Persona5 Per ...

  9. HDU6128 二次剩余/二次域求二次剩余解/LL快速乘法取模

    LINK 题意:求满足模p下$\frac{1}{a_i+a_j}\equiv\frac{1}{a_i}+\frac{1}{a_j}$的对数,其中$n,p(1\leq n\leq10^5,2\leq p ...

随机推荐

  1. QT5.8+vs2015配置以及qt creater中出现中文乱码解决办法之一

    1.参考此文档:QT5.6+vs2015配置: 2.出现乱码问题时候 在头文件上加入: #pragma execution_character_set("utf-8") //加入这 ...

  2. 2017.4.18 putty和fileZilla的使用

    putty:用来连接环境. fileZila:用来传递文件. (1)连接环境 centOS 7 点击putty.exe,输入地址.用户名.密码进行连接.端口输入22.用账号和密码登录. 进入到目录下, ...

  3. dubbo官网和帮助文档

    dubbo官网和帮助文档 https://github.com/apache/incubator-dubbo 内含帮助文档: http://dubbo.apache.org/books/dubbo-d ...

  4. 熊猫猪新系统測试之四:Ubuntu 14.04

    眼下猫猪在办公室一般用的就是乌班图系统,一方面原因是老本本性能跑不起来Windows,更重要的是本猫认为Linux系统更开放些.况且如今用的也比較熟了,全然能够脱离Windows鸟!这一系列4篇新系统 ...

  5. 创建你的第一个ionic+cordova应用(1)

    前面我们安装了前端的神器webstorm11,体验到了强大的开发体验,接着我们来安装ionic 必备: Node.js (npm安装工具) 百度下载 官网下载  注:如果官网新版不能安装请用百度下载0 ...

  6. NodeJS中的循环陷阱

    Node.js的异步机制由事件和回调函数实现,一開始接触可能会感觉违反常规,但习惯以后就会发现还是非常easy的. 然而这之中事实上暗藏不少陷阱.一个非常easy遇到的问题就是回到循环的回调函数. e ...

  7. STL学习笔记(仿函数)

    仿函数(Functors) 仿函数(functor),就是使一个类的使用看上去象一个函数.其实现就是类中实现一个operator(),这个类就有了类似函数的行为,就是一个仿函数类了. 例如我们定义一个 ...

  8. NSTimer注意内存泄露(真该死)

    NSTimer可以用来执行一些定时任务,比较常用的方法就是: + (NSTimer *)timerWithTimeInterval:(NSTimeInterval)ti target:(id)aTar ...

  9. 创建标题栏,UINavigationBar的使用

    IOS 开发有关界面的东西不仅可以使用代码来编写,也可以使用Interface Builder可视化工具来编写.今天有个朋友问我这两个有什么区别,首先说说IB ,使用它编辑出来的控件其实底层还是调用代 ...

  10. 利用nginx搭建tomcat集群

    1.tomcat集群 利用nginx对请求进行分流,将请求平均的分给不同的tomcat去处理,减少单个tomcat的负载量,提高tomcat的响应速度. 2.创建多个tomcat服务器(同一个服务器上 ...