点此看题面

大致题意: 给你一棵树,让你求出每一个节点向上的长度在\([l,r]\)范围内的路径权值和最大的\(m\)条路径的权值总和。

关于此题的数列版本

此题的数列版本,就是比较著名的【BZOJ2006】[NOI2010] 超级钢琴一题了。

其实那道题目的思想,完全也可以套到这道题目上。

当然,如果你比较强大,写主席树等玄学算法+数据结构也是可以过的。

大致思路

首先,我们\(dfs\)一遍,求出\(sum_i\)表示编号为\(i\)的节点到根节点的权值和

考虑预处理出\(RMQ_{i,j}\)表示编号为\(i\)的节点向上长度为\(2^j\)的路径中最小的\(sum\)

则对于每一个节点,从它出发能得到的最大值便是\(sum_x-GetMin(x,l,r)\),其中的\(GetMin\)可以用\(RMQ\)实现\(O(logN)\)求解(\(RMQ\)是\(O(1)\)的,但由于要找父亲,就变成了\(O(logN)\))。

我们可以把它们全部扔到一个堆里,每次取出堆顶,计算贡献,然后把这个区间拆成两半重新扔回堆中(具体做法可参考上面给出的链接,这里只是简单概括)。

具体实现详见代码。

代码

#include<bits/stdc++.h>
#define max(x,y) ((x)>(y)?(x):(y))
#define min(x,y) ((x)<(y)?(x):(y))
#define ten(x) (((x)<<3)+((x)<<1))
#define LL long long
#define N 500000
#define INF 1e18
using namespace std;
int n,m,L,R;
class FIO
{
private:
#define Fsize 100000
#define tc() (A==B&&(B=(A=Fin)+fread(Fin,1,Fsize,stdin),A==B)?EOF:*A++)
#define pc(ch) (putchar(ch))
int f,Top;char ch,*A,*B,Fin[Fsize],Stack[Fsize];
public:
inline void read(int &x) {x=0,f=1;while(!isdigit(ch=tc())) f=ch^'-'?1:-1;while(x=ten(x)+(ch&15),isdigit(ch=tc()));x*=f;}
inline void write(LL x) {if(x<0) pc('-'),x=-x;if(!x) return (void)(pc('0'));while(x) Stack[++Top]=x%10+48,x/=10;while(Top) pc(Stack[Top--]);}
}F;
class Class_RmqSolver
{
private:
#define LogN 20
public:
int fa[N+5][LogN],sum[N+5],Depth[N+5];
private:
struct key//存储每一个元素的信息
{
int pos,l,r,k,val;//pos表示起点,l,r存储可选择的区间,k存储当前选择的终点,val存储当前答案
key(int x=0,int y=0,int z=0,int w=0,int v=0):pos(x),l(y),r(z),k(w),val(v){}
inline friend bool operator < (key x,key y) {return x.val<y.val;}
};
priority_queue<key> q;//用一个堆进行维护
struct RMQ_data//RMQ求最小值
{
int MinPos,MinVal;
RMQ_data(int x=0,int y=0):MinPos(x),MinVal(y){}
inline friend bool operator < (RMQ_data x,RMQ_data y) {return x.MinVal<y.MinVal;}
}RMQ[N+5][LogN];
inline void Init() {for(register int i,j=1;j<LogN;++j) for(i=1;i<=n;++i) fa[i][j]=fa[fa[i][j-1]][j-1],RMQ[i][j]=min(RMQ[i][j-1],RMQ[fa[i][j-1]][j-1]);}//初始化
inline int getfa(int x,int dep)//找父亲
{
for(register int i=0;i<LogN;++i) if(dep&(1<<i)) x=fa[x][i];
return x;
}
inline RMQ_data get_min(int l,int r)//求最小值
{
register int i;register RMQ_data res=RMQ[l][0];
for(i=LogN-1;i>=0;--i) if(Depth[fa[r][i]]>=Depth[l]) res=min(res,RMQ[r][i]),r=fa[r][i];
return res;
}
public:
inline void Solve()
{
register int i,t;register LL ans=0;register RMQ_data s;register key now;
for(i=1;i<=n;++i) F.read(fa[i][0]),Depth[i]=Depth[fa[i][0]]+1;//初始化
for(i=1;i<=n;++i) F.read(sum[i]),sum[i]+=sum[fa[i][0]],RMQ[i][0]=RMQ_data(i,sum[fa[i][0]]);//统计前缀和+初始化(这样可以不用DFS)
for(Init(),F.read(m),F.read(L),F.read(R),i=1;i<=n;++i) if(Depth[i]>=L) t=min(R,Depth[i]),s=get_min(getfa(i,t-1),getfa(i,L-1)),q.push(key(i,getfa(i,t-1),getfa(i,L-1),s.MinPos,sum[i]-s.MinVal));//预处理把元素扔入堆中
while(m--)
{
now=q.top(),q.pop(),ans+=now.val;//取出堆中元素,统计答案,然后拆成两半重新扔入堆中
if(Depth[now.l]<Depth[now.k]) t=getfa(now.pos,Depth[now.pos]-Depth[now.k]+1),s=get_min(now.l,t),q.push(key(now.pos,now.l,t,s.MinPos,sum[now.pos]-s.MinVal));
if(Depth[now.r]>Depth[now.k]) t=getfa(now.pos,Depth[now.pos]-Depth[now.k]-1),s=get_min(t,now.r),q.push(key(now.pos,t,now.r,s.MinPos,sum[now.pos]-s.MinVal));
}
F.write(ans);//输出答案
}
}RmqSolver;
int main()
{
return F.read(n),RmqSolver.Solve(),0;
}

【BZOJ4458】GTY的OJ(树上超级钢琴)的更多相关文章

  1. 【贪心 计数 倍增】bzoj4458: GTY的OJ

    倍增写挂调了半个晚上 Description 身为IOI金牌的gtyzs有自己的一个OJ,名曰GOJ.GOJ上的题目可谓是高质量而又经典,他在他的OJ里面定义了一个树形的分类目录,且两个相同级别的目录 ...

  2. bzoj4458 GTY的OJ (优先队列+倍增)

    把超级钢琴放到了树上. 这次不用主席树了..本来以为会好写一点没想到细节更多(其实是树上细节多) 为了方便,对每个点把他的那个L,R区间转化成两个深度a,b,表示从[a,b)选一个最小的前缀和(到根的 ...

  3. bzoj4458: GTY的OJ

    题目大意:给定一棵带点权的有根树,同时给定L,R,要求找M条链,每条链满足以下条件的情况下,要求所有链权和最大: 1.两两不相同(可以包含/相交等) 2.节点数在[L,R]间 3.其中一个端点的深度必 ...

  4. BZOJ 2006: [NOI2010]超级钢琴

    2006: [NOI2010]超级钢琴 Time Limit: 20 Sec  Memory Limit: 552 MBSubmit: 2613  Solved: 1297[Submit][Statu ...

  5. 【BZOJ-2006】超级钢琴 ST表 + 堆 (一类经典问题)

    2006: [NOI2010]超级钢琴 Time Limit: 20 Sec  Memory Limit: 552 MBSubmit: 2473  Solved: 1211[Submit][Statu ...

  6. bzoj2006 noi2010 超级钢琴 主席树 + 优先队列

    Time Limit: 20 Sec  Memory Limit: 552 MBSubmit: 2435  Solved: 1195 Description 小 Z是一个小有名气的钢琴家,最近C博士送 ...

  7. 2006: [NOI2010]超级钢琴 - BZOJ

    Description小Z是一个小有名气的钢琴家,最近C博士送给了小Z一架超级钢琴,小Z希望能够用这架钢琴创作出世界上最美妙的音乐. 这架超级钢琴可以弹奏出n个音符,编号为1至n.第i个音符的美妙度为 ...

  8. Bzoj 2006: [NOI2010]超级钢琴 堆,ST表

    2006: [NOI2010]超级钢琴 Time Limit: 20 Sec  Memory Limit: 552 MBSubmit: 2222  Solved: 1082[Submit][Statu ...

  9. NOI2010超级钢琴 2

    2006: [NOI2010]超级钢琴 Time Limit: 20 Sec  Memory Limit: 552 MBSubmit: 1296  Solved: 606[Submit][Status ...

随机推荐

  1. webpack@3.6.0(2) -- css及图片相关问题

    本篇内容 css3前缀处理postcss 消除未使用的css部分 图片处理 css分离和分离后的图片处理 css3前缀处理postcss cnpm i -D postcss-loader autopr ...

  2. go培训课程都学什么?xorm框架学习系列(二):xorm结构体映射规则和表操作

    上节内容我们学习了基本的xorm框架的知识和基础配置的相关信息.本节课内容我们继续学习相关的知识和相关操作. 名称映射规则 名称映射规则主要负责结构体名称到表名和结构体field到表字段的名称映射. ...

  3. hortonworks docker 安装

    1. 下载并解压安装脚本:  Hortonworks Data Platform (HDP) for Docker 2. 进入到解压后的目录,运行下面的命令,{HDPversion} 需要替换成相应目 ...

  4. 51nod1010(枚举+二分)

    题目链接:https://www.51nod.com/onlineJudge/questionCode.html#!problemId=1010 题意:中文题诶- 思路:求第一个比 x (1<= ...

  5. cogs 2123. [HZOI 2015] Glass Beads

    2123. [HZOI 2015] Glass Beads ★★★   输入文件:MinRepresentations.in   输出文件:MinRepresentations.out   简单对比时 ...

  6. Objective-C对象的申请空间与初始化

    对象分配空间与初始化 对象分配空间与初始化 使用Objective-C语言创建一个对象有两个步骤,你必须: 为新对象动态分配内存空间 初始化新分配的内存,并赋初值 不经过如上两步,一个对象就没有完全功 ...

  7. IDEA的git密码修改

    问题: 如果你办公的电脑是同事用过,在每次提交git的时候都显示是他的名字.想要修改提交git用户名密码. 但是博客idea 修改Git密码和账号方法所示方法无效.且操作系统是win10.(其他操作系 ...

  8. tp5模型事件回调函数中不能使用$this

    tp5模型事件回调函数中不能使用$this,使用会报错,涉及到数据库操作使用Db类,不能使用$this->save()之类的方式 如果回调函数中需要使用类内函数,需要将函数定义为static,通 ...

  9. 如何直接修改cf,of等标志位的值?

    如何直接修改 cf,of 等 标志寄存器位的值? 我记得在哪个教程里见过,但是不太记得了… 貌似是在yjx驱动教程里面… 我想弄这个的原因是想验证 网上查到的 各种跳转语句(ja,jl,jg等) 需要 ...

  10. python3 下载 以及 练习1 以及 pycharm 专业版 安装

    下载python: https://www.python.org/downloads/release/python-365/ ########sample 1 下载pycharm 社区版本,但是web ...