UVA 10806
#include<iostream>
#include<algorithm>
#include<cstdio>
#include<cstring>
using namespace std;
const int maxn = 1e5+11;
const int oo = 0x3f3f3f3f;
int to[maxn<<1],cost[maxn<<1],cap[maxn<<1],flow[maxn<<1],nxt[maxn<<1];
int head[maxn],tot;
void init(){
memset(head,-1,sizeof head);
tot=0;
}
void add(int u,int v,int c,int w){
to[tot]=v;
cap[tot]=c;
flow[tot]=0;
cost[tot]=w;
nxt[tot]=head[u];
head[u]=tot++;
swap(u,v);
to[tot]=v;
cap[tot]=0;
flow[tot]=0;
cost[tot]=-w;
nxt[tot]=head[u];
head[u]=tot++;
}
struct QUEUE{
int que[maxn];
int front,rear;
void init(){front=rear=0;}
void push(int x){que[rear++]=x;}
int pop(){return que[front++];}
bool empty(){return front==rear;}
}que;
int n,m,s,t;
bool vis[maxn];
int pre[maxn],dis[maxn];
bool spfa(){
que.init();
memset(vis,0,sizeof vis);
memset(pre,-1,sizeof pre);
memset(dis,oo,sizeof dis);
que.push(s);vis[s]=1;dis[s]=0;
while(!que.empty()){
int u=que.pop(); vis[u]=0;
for(int i = head[u]; ~i; i = nxt[i]){
int v=to[i],c=cap[i],f=flow[i],w=cost[i];
if(c>f&&dis[v]>dis[u]+w){
dis[v]=dis[u]+w;
pre[v]=i;
if(!vis[v]){
que.push(v);
vis[v]=1;
}
}
}
}
if(dis[t]==oo) return 0;
else return 1;
}
int mcmf(int &mc){
mc=0;int mf=0;
while(spfa()){
int tf=oo+1;
for(int i = pre[t]; ~i; i = pre[to[i^1]]){
tf=min(tf,cap[i]-flow[i]);
}
mf+=tf;
for(int i = pre[t]; ~i; i = pre[to[i^1]]){
flow[i]+=tf;
flow[i^1]-=tf;
}
mc+=dis[t]*tf;
}
return mf;
}
#define rep(i,j,k) for(int i = j; i <= k; i++)
#define repp(i,j,k) for(int i = j; i < k; i++)
#define repe(i,u) for(int i = head[u]; ~i; i = nxt[i])
#define scan(a) scanf("%d",&a)
#define scann(a,b) scanf("%d%d",&a,&b)
#define scannn(a,b,c) scanf("%d%d%d",&a,&b,&c)
#define println(a) printf("%d\n",a)
#define printbk(a) printf("%d ",a)
#define print(a) printf("%d",a)
int main(){
int n1,m,a[maxn],b[maxn],c[maxn];
while(scan(n1)!=EOF){
if(n1==0)break;
init();
scan(m);
rep(i,1,m){
scannn(a[i],b[i],c[i]);
add(a[i],b[i],1,c[i]);add(b[i],a[i],1,c[i]);
}
s=n1+1;t=s+1;n=t;
add(s,1,2,0);add(n1,t,oo,0);
int mc;
int ans=mcmf(mc);
if(ans<2)printf("Back to jail\n");
else println(mc);
}
return 0;
}
UVA 10806的更多相关文章
- uva 10806 Dijkstra, Dijkstra. (最小费最大流)
uva 10806 Dijkstra, Dijkstra. 题目大意:你和你的伙伴想要越狱.你的伙伴先去探路,等你的伙伴到火车站后,他会打电话给你(电话是藏在蛋糕里带进来的),然后你就能够跑去火车站了 ...
- Uva 10806 来回最短路,不重复,MCMF
题目链接:https://uva.onlinejudge.org/external/108/10806.pdf 题意:无向图,从1到n来回的最短路,不走重复路. 分析:可以考虑为1到n的流量为2时的最 ...
- UVa 10806 & 费用流+意识流...
题意: 一张无向图,求两条没有重复的从S到T的路径. SOL: 网络流为什么屌呢..因为网络流的容量,流量,费用能对许许多多的问题进行相应的转化,然后它就非常的屌. 对于这道题呢,不是要没有重复吗?不 ...
- UVA 10806 Dijkstra, Dijkstra.(费用流)
n个点的无向带权图,求1->n的最短往返路径,不走重复边. 这里涉及到一个知识点:求无向图上s->t的最短路,其实就是费用流. 而求1->n最短往返路径呢?增加源点s,由s到1加弧, ...
- UVA 10806 Dijkstra, Dijkstra.
题意: 从起点走到终点,然后从终点走到起点,其中不能同时走过相同的一条边,问你最小路径长度.先输入终点n,起点为1,接下来输入m,代表有m条边.每条边由起点,终点,长度组成. 分析: 求最小长度,还限 ...
- UVa 10806 Dijkstra,Dijkstra(最小费用最大流)
裸的费用流.往返就相当于从起点走两条路到终点. 按题意建图,将距离设为费用,流量设为1.然后增加2个点,一个连向节点1,流量=2,费用=0;结点n连一条同样的弧,然后求解最小费用最大流.当且仅当最大流 ...
- UVA 10806 Cheerleaders
Cheerleaders Description C Cheerleaders In most professional sporting events, cheerleaders play a ...
- UVA 10806 最小费用最大流
终于可以写这道题的题解了,昨天下午纠结我一下下午,晚上才照着人家的题解敲出来,今天上午又干坐着想了两个小时,才弄明白这个问题. 题意很简单,给出一个无向图,要求从1 到 n最短路两次,但是两次不允许经 ...
- HDU 2686 MCMF
题意:两遍最长路,不能走重复点.和UVA 10806类似. 分析:拆点,u->u',MCMF,求的是最大流的最小费用,那么cost取负. 注意的是源点,源点不用拆,那么走出来的最小费用,左上角的 ...
随机推荐
- js分页demo
纯js实现分页 原理:所有数据已加载好,js通过遍历部分显示,实现分页效果 html代码 <html> <head> <meta charset='utf-8'> ...
- java 类中 static 的使用
在类中 static 主要修饰变量,方法及代码块.大致的执行和使用,据个人理解如下: 1.修饰变量: 在修饰变量时,如 ,表示该变量是静态变量,也可称为类变量.当当前变量是静态变量时,该变量被该类的所 ...
- 第2章 netty介绍与相关基础知识
NIO有一个零拷贝的特性.Java的内存有分为堆和栈,以及还有字符串常量池等等.如果有一些数据需要从IO里面读取并且放到堆里面,中间其实会经过一些缓冲区.我们要去读,它会分成两个步骤,第一块它会把我们 ...
- c# 类的初步认识
这里我们把类分为三种: String类(字符串类):Math类(数学类):DateTime类(时间日期类). 在使用类时注意 在输入的过程中代码前面会出现一些符号(紫色立方体代表方法,函数和黑色扳手 ...
- java过滤器 Fliter
定义:过滤器是一个服务器端组件,他可以截取用户端请求信息与响应信息,并对信息进行过滤 例:当进入csdn要进行文章编辑时,检测用户是否登录,若未登录,跳转到登录界面. 过滤器操作方法: init() ...
- Luogu 3939 数颜色
随手点开一个题. 咦,这不是裸的动态开点线段树吗?写一个写一个…… Code: #include <cstdio> #include <cstring> using names ...
- rest-framework组件 之 认证与权限组件
浏览目录 认证组件 权限组件 频率组件 认证与权限组件 认证组件 局部视图认证 在app01.service.auth.py: class Authentication(BaseAuthenticat ...
- DWR原理探秘
DWR原理探秘 DWR(Direct Web Remoting)远程Web命令;是一个用于改善web页面与Java类交互的远程服务器端Ajax开源框架,可以帮助开发人员开发包含AJAX技术的网站.它可 ...
- 用MODI OCR 21种语言
作者:马健邮箱:stronghorse_mj@hotmail.com发布:2007.12.08更新:2012.07.09按照<MODI中的OCR模块>一文相关内容进行修订2012.07.0 ...
- blkid找不到需要的uuid
记录: blkid找不到需要的uuid,需要格式化后才有