一、join优化

Join查找操作的基本原则:应该将条目少的表/子查询放在 Join 操作符的左边。原因是在 Join 操作的 Reduce 阶段,位于 Join 操作符左边的表的内容会被加载进内存,将条目少的表放在左边,可以有效减少发生内存溢出错误的几率。

Join查找操作中如果存在多个join,且所有参与join的表中其参与join的key都相同,则会将所有的join合并到一个mapred程序中。

案例:

SELECT a.val, b.val, c.val FROM a JOIN b ON (a.key = b.key1) JOIN c ON (c.key = b.key1)  在一个mapre程序中执行join

SELECT a.val, b.val, c.val FROM a JOIN b ON (a.key = b.key1) JOIN c ON (c.key = b.key2)   在两个mapred程序中执行join

Map join的关键在于join操作中的某个表的数据量很小,案例:

SELECT /*+ MAPJOIN(b) */ a.key, a.value

FROM a join b on a.key = b.key

Mapjoin 的限制是无法执行a FULL/RIGHT OUTER JOIN b,和map join相关的hive参数:hive.join.emit.interval  hive.mapjoin.size.key  hive.mapjoin.cache.numrows

由于join操作是在where操作之前执行,所以当你在执行join时,where条件并不能起到减少join数据的作用;案例:

SELECT a.val, b.val FROM a LEFT OUTER JOIN b ON (a.key=b.key)

WHERE a.ds='2009-07-07' AND b.ds='2009-07-07'

最好修改为:

SELECT a.val, b.val FROM a LEFT OUTER JOIN b

ON (a.key=b.key AND b.ds='2009-07-07' AND a.ds='2009-07-07')

在join操作的每一个mapred程序中,hive都会把出现在join语句中相对靠后的表的数据stream化,相对靠前的变的数据缓存在内存中。当然,也可以手动指定stream化的表:SELECT /*+ STREAMTABLE(a) */ a.val, b.val, c.val FROM a JOIN b ON (a.key = b.key1) JOIN c ON (c.key = b.key1)

二、group by 优化

Map端聚合,首先在map端进行初步聚合,最后在reduce端得出最终结果,相关参数:

· hive.map.aggr = true是否在 Map 端进行聚合,默认为 True

· hive.groupby.mapaggr.checkinterval = 100000在 Map 端进行聚合操作的条目数目

数据倾斜聚合优化,设置参数hive.groupby.skewindata = true,当选项设定为 true,生成的查询计划会有两个 MR Job。第一个 MR Job 中,Map 的输出结果集合会随机分布到 Reduce 中,每个 Reduce 做部分聚合操作,并输出结果,这样处理的结果是相同的 Group By Key 有可能被分发到不同的 Reduce 中,从而达到负载均衡的目的;第二个 MR Job 再根据预处理的数据结果按照 Group By Key 分布到 Reduce 中(这个过程可以保证相同的 Group By Key 被分布到同一个 Reduce 中),最后完成最终的聚合操作。

三、合并小文件

文件数目过多,会给 HDFS 带来压力,并且会影响处理效率,可以通过合并 Map 和 Reduce 的结果文件来消除这样的影响:

· hive.merge.mapfiles = true是否和并 Map 输出文件,默认为 True

· hive.merge.mapredfiles = false是否合并 Reduce 输出文件,默认为 False

· hive.merge.size.per.task = 256*1000*1000合并文件的大小

四、Hive实现(not) in

通过left outer join进行查询,(假设B表中包含另外的一个字段 key1

select a.key from a left outer join b on a.key=b.key where b.key1 is null

通过left semi join 实现 in

SELECT a.key, a.val FROM a LEFT SEMI JOIN b on (a.key = b.key)

Left semi join 的限制:join条件中右边的表只能出现在join条件中。

五、排序优化

Order by 实现全局排序,一个reduce实现,效率低

Sort by 实现部分有序,单个reduce输出的结果是有序的,效率高,通常和DISTRIBUTE BY关键字一起使用(DISTRIBUTE BY关键字 可以指定map 到 reduce端的分发key)

CLUSTER BY col1 等价于DISTRIBUTE BY col1 SORT BY col1

六、使用分区

Hive中的每个分区都对应hdfs上的一个目录,分区列也不是表中的一个实际的字段,而是一个或者多个伪列,在表的数据文件中实际上并不保存分区列的信息与数据。Partition关键字中排在前面的为主分区(只有一个),后面的为副分区

静态分区:静态分区在加载数据和使用时都需要在sql语句中指定

案例:(stat_date='20120625',province='hunan')

动态分区:使用动态分区需要设置hive.exec.dynamic.partition参数值为true,默认值为false,在默认情况下,hive会假设主分区时静态分区,副分区使用动态分区;如果想都使用动态分区,需要设置set hive.exec.dynamic.partition.mode=nostrick,默认为strick

案例:(stat_date='20120625',province)

七、Distinct 使用

Hive支持在group by时对同一列进行多次distinct操作,却不支持在同一个语句中对多个列进行distinct操作。

八、Hql使用自定义的mapred脚本

注意事项:在使用自定义的mapred脚本时,关键字MAP REDUCE 是语句SELECT TRANSFORM ( ... )的语法转换,并不意味着使用MAP关键字时会强制产生一个新的map过程,使用REDUCE关键字时会产生一个red过程。

自定义的mapred脚本可以是hql语句完成更为复杂的功能,但是性能比hql语句差了一些,应该尽量避免使用,如有可能,使用UDTF函数来替换自定义的mapred脚本

九、UDTF

UDTF将单一输入行转化为多个输出行,并且在使用UDTF时,select语句中不能包含其他的列,UDTF不支持嵌套,也不支持group by 、sort by等语句。如果想避免上述限制,需要使用lateral view语法,案例:

select a.timestamp, get_json_object(a.appevents, '$.eventid'), get_json_object(a.appenvets, '$.eventname') from log a;

select a.timestamp, b.*

from log a lateral view json_tuple(a.appevent, 'eventid', 'eventname') b as f1, f2;

其中,get_json_object为UDF函数,json_tuple为UDTF函数。

UDTF函数在某些应用场景下可以大大提高hql语句的性能,如需要多次解析json或者xml数据的应用场景。

十、聚合函数count和sum

Count和sum函数可能是在hql语句中使用的最为频繁的两个聚合函数了,但是在hive中count函数在计算distinct value时支持加入条件过滤。

Hive 查询优化总结的更多相关文章

  1. Hive 文件格式 & Hive操作(外部表、内部表、区、桶、视图、索引、join用法、内置操作符与函数、复合类型、用户自定义函数UDF、查询优化和权限控制)

    本博文的主要内容如下: Hive文件存储格式 Hive 操作之表操作:创建外.内部表 Hive操作之表操作:表查询 Hive操作之表操作:数据加载 Hive操作之表操作:插入单表.插入多表 Hive语 ...

  2. Hive和并行数据仓库的比较

    最近分析和比较了Hive和并行数据仓库的架构,本文记下一些体会. Hive是架构在Hadoop MapReduce Framework之上的开源数据分析系统. Hive具有如下特点: 1. 数据以HD ...

  3. Hive数据分析——Spark是一种基于rdd(弹性数据集)的内存分布式并行处理框架,比于Hadoop将大量的中间结果写入HDFS,Spark避免了中间结果的持久化

    转自:http://blog.csdn.net/wh_springer/article/details/51842496 近十年来,随着Hadoop生态系统的不断完善,Hadoop早已成为大数据事实上 ...

  4. 关于hive核心

    一.DDL数据定义 1.创建数据库 1)创建一个数据库,数据库在 HDFS 上的默认存储路径是/user/hive/warehouse/*.db. hive (default)> create ...

  5. Hadoop基础知识串烧

     YARN资源调度: 三种 FIFO 大任务独占 一堆小任务独占 capacity 弹性分配 :计算任务较少时候可以利用全部的计算资源,当队列的任务多的时候会按照比例进行资源平衡. 容量保证:保证队 ...

  6. HadoopMR-Spark-HBase-Hive

     YARN资源调度: 三种 FIFO 大任务独占 一堆小任务独占 capacity 弹性分配 :计算任务较少时候可以利用全部的计算资源,当队列的任务多的时候会按照比例进行资源平衡. 容量保证:保证队 ...

  7. Hadoop生态圈-hive优化手段-作业和查询优化

    Hadoop生态圈-hive优化手段-作业和查询优化 作者:尹正杰 版权声明:原创作品,谢绝转载!否则将追究法律责任.

  8. Hive入门(四)查询优化

    1 本地模式 0.7版本后Hive开始支持任务执行选择本地模式(local mode). 大多数的Hadoop job是需要hadoop提供的完整的可扩展性来处理大数据的.不过,有时hive的输入数据 ...

  9. Hive架构及Hive On Spark

    Hive的所有数据都存在HDFS中. (1)Table:每个表都对应在HDFS中的目录下,数据是经过序列化后存储在该目录中.同时Hive也支持表中的数据存储在其他类型的文件系统中,如NFS或本地文件系 ...

随机推荐

  1. es6对象内函数的两种写法

    es6对象内函数一般有两种写法: var person1 = { name: "p1", sayThis() { console.log(this); } }; var perso ...

  2. 【并查集】关押罪犯(BSOJ2809)

    Description S城现有两座监狱,一共关押着N名罪犯,编号分别为1~N.他们之间的关系自然也极不和谐.很多罪犯之间甚至积怨已久,如果客观条件具备则随时可能爆发冲突.我们用“怨 气值”(一个正整 ...

  3. C++ typedef的一个用法

    1.不适用typedef: #include <iostream> #include <cstring> using namespace std; struct Books { ...

  4. MySQL 当记录不存在时insert,当记录存在时update

    MySQL当记录不存在时insert,当记录存在时更新:网上基本有三种解决方法 第一种: 示例一:insert多条记录 假设有一个主键为 client_id 的 clients 表,可以使用下面的语句 ...

  5. Docker与LXC、虚拟化技术的区别——虚拟化技术本质上是在模拟硬件,Docker底层是LXC,本质都是cgroups是在直接操作硬件

    先说和虚拟化技术的区别: 难道虚拟技术就做不到吗? 不不不,虚拟技术也可以做到,但是会有一定程度的性能损失,灵活度也会下降.容器技术不是模仿硬件层次,而是 在Linux内核里使用cgroup和name ...

  6. .dhpcd导致cpu飙升问题

    因公司有业务服务器在阿里云上面,阿里云后台报警说,“有恶意程序在挖矿”,引起了高度重视,于是我登陆服务器进行排查. 登陆云服务器:系统centos7.5 第一步使用top查看资源情况. top 可以清 ...

  7. Selenium-几种操作

    元素定位之后就要对它进行操作了,常见的集中操作如下: click() 点击元素 eg.输入内容后,点击操作 send_keys("内容") 模拟按键输入 eg:百度输入框,输入内容 ...

  8. hbase_学习_00_资源帖

    一.官方资料 1.官网:http://hbase.apache.org/ 2.官方文档:HBase 官方文档中文版 二.apache软件下载基地 1. Apache Software Foundati ...

  9. mysql字符串的隐式转换导致查询异常

    如果mysql某个字段(name)类型为varchar, 加了索引,在执行where查询的时候,传入了int的值,这样就会全表扫描,把每一条的值都转换成int(会出现"中国"-&g ...

  10. Smali文件添加try/catch语句,出现“invalid use of move-exception”异常

    插入代码如下: 捕获到以下异常: 2019-03-18 21:09:35.431 8272-8272/com.xxxx.xxxx E/AndroidRuntime: FATAL EXCEPTION: ...