题目

PS国是一个拥有诸多城市的大国,国王Louis为城市的交通建设可谓绞尽脑汁。Louis可以在某些城市之间修建道路,在不同的城市之间修建道路需要不同的花费。Louis希望建造最少的道路使得国内所有的城市连通。但是由于某些因素,城市之间修建道路需要的花费会随着时间而改变,Louis会不断得到某道路的修建代价改变的消息,他希望每得到一条消息后能立即知道使城市连通的最小花费总和, Louis决定求助于你来完成这个任务。

题解

经典的动态最小生成树问题。

可以采用cdq分治的方式来解决。

核心思想就是:

  1. 对于无论被修改的边修改成什么样都一定会被加入的非修改边进行缩点以减小数据范围。
  2. 对于无论被修改的边修改成什么样都一定不被加入的非修改边进行删除以减小数据范围。

对于两种边的确定可以直接设被修改的边的边权为-inf或inf,然后跑Kruskal确定

复杂度。。。

他们说是\(O(nlog^2n)\)的。。。

反正跑的很快就是了。

#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;
typedef long long ll;
inline void read(int &x){
x=0;static char ch;static bool flag;flag = false;
while(ch=getchar(),ch<'!');if(ch == '-') ch=getchar(),flag = true;
while(x=10*x+ch-'0',ch=getchar(),ch>'!');if(flag) x=-x;
}
#define rg register int
#define rep(i,a,b) for(rg i=(a);i<=(b);++i)
#define per(i,a,b) for(rg i=(a);i>=(b);--i)
const int maxn = 50010;
const int maxm = 100010;
const int inf = 0x3f3f3f3f;
struct Edge{
int u,v,w,id;
bool friend operator < (const Edge &a,const Edge &b){
return a.w < b.w;
}
}e[30][maxm],L[maxm],tmp[maxm];
int Nn[30],Ne[30];
int fa[maxn];
inline int find(int x){
return x == fa[x] ? x : fa[x] = find(fa[x]);
}
inline bool merge(int u,int v){
int x = find(u);
int y = find(v);
if(x == y) return false;
fa[x] = y;return true;
}
int val[maxm];
struct Node{
int k,w;
}qer[maxm];
bool vis[maxm];
int tmp_n[maxn],tmp_m[maxm],map[maxm];
ll ans[maxm];
inline void step1(int &n,int &m,ll &res){
int N = 0,M = 0;
rep(i,1,n) fa[i] = i;
rep(i,0,m-1) vis[i] = 0;
sort(L,L+m);
rep(i,0,m-1){
if(merge(L[i].u,L[i].v) && L[i].w != -inf){
res += L[i].w;
vis[i] = true;
}else tmp[M ++ ] = L[i];
}
rep(i,1,n) fa[i] = i;
rep(i,0,m-1) if(vis[i]) merge(L[i].u,L[i].v);
rep(i,1,n) if(find(i) == i) tmp_n[i] = ++ N;
rep(i,1,n) tmp_n[i] = tmp_n[find(i)];
rep(i,0,M-1){
L[i] = tmp[i];
map[L[i].id] = i;
L[i].u = tmp_n[L[i].u];
L[i].v = tmp_n[L[i].v];
}
n = N;m = M;
}
inline void step2(int &n,int &m){
int M = 0;
rep(i,1,n) fa[i] = i;
sort(L,L+m);
rep(i,0,m-1){
if(merge(L[i].u,L[i].v) || L[i].w == inf){
map[L[i].id] = M;
L[M++] = L[i];
}
}m = M;
}
inline void solve(int l,int r,int cur,ll res){
int n = Nn[cur],m = Ne[cur];
if(l == r) val[qer[r].k] = qer[r].w;
rep(i,0,m-1){
e[cur][i].w = val[e[cur][i].id];
L[i] = e[cur][i];
map[L[i].id] = i;
}
if(l == r){
rep(i,1,n) fa[i] = i;
sort(L,L+m);
rep(i,0,m-1){
if(merge(L[i].u,L[i].v)) res += L[i].w;
}
ans[l] = res;
return ;
}
rep(i,l,r) L[map[qer[i].k]].w = -inf;step1(n,m,res);
rep(i,l,r) L[map[qer[i].k]].w = inf;step2(n,m);
Nn[cur+1] = n;Ne[cur+1] = m;
rep(i,0,m-1) e[cur+1][i] = L[i];
int mid = l+r >> 1;
solve(l,mid,cur+1,res);
solve(mid+1,r,cur+1,res);
}
int main(){
int n,m,Q;read(n);read(m);read(Q);
rep(i,0,m-1){
read(e[0][i].u);
read(e[0][i].v);
read(e[0][i].w);
val[i] = e[0][i].w;
e[0][i].id = i;
}
rep(i,1,Q){
read(qer[i].k);read(qer[i].w);
-- qer[i].k;
}
Nn[0] = n;Ne[0] = m;
solve(1,Q,0,0);
rep(i,1,Q) printf("%lld\n",ans[i]);
return 0;
}

bzoj 2001: City 城市建设 cdq的更多相关文章

  1. bzoj 2001 CITY 城市建设 cdq分治

    题目传送门 题解: 对整个修改的区间进行分治.对于当前修改区间来说,我们对整幅图中将要修改的边权都先改成-inf,跑一遍最小生成树,然后对于一条树边并且他的权值不为-inf,那么这条边一定就是树边了. ...

  2. BZOJ2001 [Hnoi2010]City 城市建设 CDQ分治

    2001: [Hnoi2010]City 城市建设 Time Limit: 20 Sec  Memory Limit: 162 MB Description PS国是一个拥有诸多城市的大国,国王Lou ...

  3. BZOJ 2001: [Hnoi2010]City 城市建设

    2001: [Hnoi2010]City 城市建设 Time Limit: 20 Sec  Memory Limit: 162 MBSubmit: 1132  Solved: 555[Submit][ ...

  4. 【BZOJ2001】 [Hnoi2010]City 城市建设

    BZOJ2001 [Hnoi2010]City 城市建设 Solution 我们考虑一下这个东西怎么求解? 思考无果...... 咦? 好像可以离线cdq,每一次判断一下如果这条边如果不选就直接删除, ...

  5. 2001: [Hnoi2010]City 城市建设 - BZOJ

    DescriptionPS国是一个拥有诸多城市的大国,国王Louis为城市的交通建设可谓绞尽脑汁.Louis可以在某些城市之间修建道路,在不同的城市之间修建道路需要不同的花费.Louis希望建造最少的 ...

  6. 【刷题】BZOJ 2001 [Hnoi2010]City 城市建设

    Description PS国是一个拥有诸多城市的大国,国王Louis为城市的交通建设可谓绞尽脑汁.Louis可以在某些城市之间修建道路,在不同的城市之间修建道路需要不同的花费.Louis希望建造最少 ...

  7. BZOJ2001 [Hnoi2010]City 城市建设 【CDQ分治 + kruskal】

    题目链接 BZOJ2001 题解 CDQ分治神题... 难想难写.. 比较朴素的思想是对于每个询问都求一遍\(BST\),这样做显然会爆 考虑一下时间都浪费在了什么地方 我们每次求\(BST\)实际上 ...

  8. BZOJ2001: [Hnoi2010]City 城市建设

    题目:http://www.lydsy.com/JudgeOnline/problem.php?id=2001 cdq分治+重建图. 可以保留当前一定会被选的非修改边然后把点缩起来.这样的话每次点数至 ...

  9. 【bzoj2001】 Hnoi2010—City 城市建设

    http://www.lydsy.com/JudgeOnline/problem.php?id=2001 (题目链接) 题意 给出一张无向图,$m$组操作,每次修改一条边的权值,对于每次操作输出修改之 ...

随机推荐

  1. lua例子getglobal()

    #include <stdio.h> #define MAX_COLOR 255 extern "C" { #include "lua-5.2.2/src/l ...

  2. EasyNVR无插件摄像机直播之:摄像机网页低延时无插件直播实现

    背景需求 对于摄像机直播,客户反馈的最多就是实现web直播.摆脱插件,可以自定义集成等问题, 对于熟悉EasyNVR已经完美的解决了这些问题.然而对于web播放也存在一些问题,通常我们web播放RTM ...

  3. maven3 org.codehaus.plexus.classworlds.launcher.launcher 找不到或无法加载主类

    maven3 org.codehaus.plexus.classworlds.launcher.launcher 找不到或无法加载主类 嗯,网上很多资料说是路径的问题,确实是有可能是路径的问题,而且还 ...

  4. WiX 中XML引用变量说明

    WiX 安装工程中的XML 文件所引用变量说明: The WiX project supports the following project reference variables: Variabl ...

  5. Linux安装Nginx使用反向代理

    nginx的反向代理功能(自带了反向代理的功能,天生的二道贩子)1.实验环境准备准备2个服务器,都安装好nginx软件nginx1 192.168.13.79 作为web服务器 (理解为火车票售票点) ...

  6. 我的Android进阶之旅------>如何为ListView组件加上快速滑块以及修改快速滑块图像

    使用布局文件需要将android:fastScrollEnabled="true" ,如下代码所示: <ListView android:id="@+id/list ...

  7. Javaweb基础--->监听器listener(转发)

    JavaWeb中的监听器 1.基本概念 JavaWeb中的监听器是Servlet规范中定义的一种特殊类,它用于监听web应用程序中的ServletContext, HttpSession和 Servl ...

  8. input type="radio" jquery判断checked的三种方法:

    <input type="radio" name="radioname" value="" />全部 <input typ ...

  9. R语言set.seed()函数介绍

    set.seed(),该命令的作用是设定生成随机数的种子,种子是为了让结果具有重复性.如果不设定种子,生成的随机数无法重现.这个函数的主要目的,是让你的模拟能够可重复出现,因为很多时候我们需要取随机数 ...

  10. Git——版本控制概论(一)

    随着信息技术的发展,软件开发已不是小手工作坊,软件的规模和复杂度已经不再适合一个人单打独斗的开发了, 团队协作变得相当重要,如果没有VCS(版本控制系统Version Control System), ...