题目

PS国是一个拥有诸多城市的大国,国王Louis为城市的交通建设可谓绞尽脑汁。Louis可以在某些城市之间修建道路,在不同的城市之间修建道路需要不同的花费。Louis希望建造最少的道路使得国内所有的城市连通。但是由于某些因素,城市之间修建道路需要的花费会随着时间而改变,Louis会不断得到某道路的修建代价改变的消息,他希望每得到一条消息后能立即知道使城市连通的最小花费总和, Louis决定求助于你来完成这个任务。

题解

经典的动态最小生成树问题。

可以采用cdq分治的方式来解决。

核心思想就是:

  1. 对于无论被修改的边修改成什么样都一定会被加入的非修改边进行缩点以减小数据范围。
  2. 对于无论被修改的边修改成什么样都一定不被加入的非修改边进行删除以减小数据范围。

对于两种边的确定可以直接设被修改的边的边权为-inf或inf,然后跑Kruskal确定

复杂度。。。

他们说是\(O(nlog^2n)\)的。。。

反正跑的很快就是了。

#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;
typedef long long ll;
inline void read(int &x){
x=0;static char ch;static bool flag;flag = false;
while(ch=getchar(),ch<'!');if(ch == '-') ch=getchar(),flag = true;
while(x=10*x+ch-'0',ch=getchar(),ch>'!');if(flag) x=-x;
}
#define rg register int
#define rep(i,a,b) for(rg i=(a);i<=(b);++i)
#define per(i,a,b) for(rg i=(a);i>=(b);--i)
const int maxn = 50010;
const int maxm = 100010;
const int inf = 0x3f3f3f3f;
struct Edge{
int u,v,w,id;
bool friend operator < (const Edge &a,const Edge &b){
return a.w < b.w;
}
}e[30][maxm],L[maxm],tmp[maxm];
int Nn[30],Ne[30];
int fa[maxn];
inline int find(int x){
return x == fa[x] ? x : fa[x] = find(fa[x]);
}
inline bool merge(int u,int v){
int x = find(u);
int y = find(v);
if(x == y) return false;
fa[x] = y;return true;
}
int val[maxm];
struct Node{
int k,w;
}qer[maxm];
bool vis[maxm];
int tmp_n[maxn],tmp_m[maxm],map[maxm];
ll ans[maxm];
inline void step1(int &n,int &m,ll &res){
int N = 0,M = 0;
rep(i,1,n) fa[i] = i;
rep(i,0,m-1) vis[i] = 0;
sort(L,L+m);
rep(i,0,m-1){
if(merge(L[i].u,L[i].v) && L[i].w != -inf){
res += L[i].w;
vis[i] = true;
}else tmp[M ++ ] = L[i];
}
rep(i,1,n) fa[i] = i;
rep(i,0,m-1) if(vis[i]) merge(L[i].u,L[i].v);
rep(i,1,n) if(find(i) == i) tmp_n[i] = ++ N;
rep(i,1,n) tmp_n[i] = tmp_n[find(i)];
rep(i,0,M-1){
L[i] = tmp[i];
map[L[i].id] = i;
L[i].u = tmp_n[L[i].u];
L[i].v = tmp_n[L[i].v];
}
n = N;m = M;
}
inline void step2(int &n,int &m){
int M = 0;
rep(i,1,n) fa[i] = i;
sort(L,L+m);
rep(i,0,m-1){
if(merge(L[i].u,L[i].v) || L[i].w == inf){
map[L[i].id] = M;
L[M++] = L[i];
}
}m = M;
}
inline void solve(int l,int r,int cur,ll res){
int n = Nn[cur],m = Ne[cur];
if(l == r) val[qer[r].k] = qer[r].w;
rep(i,0,m-1){
e[cur][i].w = val[e[cur][i].id];
L[i] = e[cur][i];
map[L[i].id] = i;
}
if(l == r){
rep(i,1,n) fa[i] = i;
sort(L,L+m);
rep(i,0,m-1){
if(merge(L[i].u,L[i].v)) res += L[i].w;
}
ans[l] = res;
return ;
}
rep(i,l,r) L[map[qer[i].k]].w = -inf;step1(n,m,res);
rep(i,l,r) L[map[qer[i].k]].w = inf;step2(n,m);
Nn[cur+1] = n;Ne[cur+1] = m;
rep(i,0,m-1) e[cur+1][i] = L[i];
int mid = l+r >> 1;
solve(l,mid,cur+1,res);
solve(mid+1,r,cur+1,res);
}
int main(){
int n,m,Q;read(n);read(m);read(Q);
rep(i,0,m-1){
read(e[0][i].u);
read(e[0][i].v);
read(e[0][i].w);
val[i] = e[0][i].w;
e[0][i].id = i;
}
rep(i,1,Q){
read(qer[i].k);read(qer[i].w);
-- qer[i].k;
}
Nn[0] = n;Ne[0] = m;
solve(1,Q,0,0);
rep(i,1,Q) printf("%lld\n",ans[i]);
return 0;
}

bzoj 2001: City 城市建设 cdq的更多相关文章

  1. bzoj 2001 CITY 城市建设 cdq分治

    题目传送门 题解: 对整个修改的区间进行分治.对于当前修改区间来说,我们对整幅图中将要修改的边权都先改成-inf,跑一遍最小生成树,然后对于一条树边并且他的权值不为-inf,那么这条边一定就是树边了. ...

  2. BZOJ2001 [Hnoi2010]City 城市建设 CDQ分治

    2001: [Hnoi2010]City 城市建设 Time Limit: 20 Sec  Memory Limit: 162 MB Description PS国是一个拥有诸多城市的大国,国王Lou ...

  3. BZOJ 2001: [Hnoi2010]City 城市建设

    2001: [Hnoi2010]City 城市建设 Time Limit: 20 Sec  Memory Limit: 162 MBSubmit: 1132  Solved: 555[Submit][ ...

  4. 【BZOJ2001】 [Hnoi2010]City 城市建设

    BZOJ2001 [Hnoi2010]City 城市建设 Solution 我们考虑一下这个东西怎么求解? 思考无果...... 咦? 好像可以离线cdq,每一次判断一下如果这条边如果不选就直接删除, ...

  5. 2001: [Hnoi2010]City 城市建设 - BZOJ

    DescriptionPS国是一个拥有诸多城市的大国,国王Louis为城市的交通建设可谓绞尽脑汁.Louis可以在某些城市之间修建道路,在不同的城市之间修建道路需要不同的花费.Louis希望建造最少的 ...

  6. 【刷题】BZOJ 2001 [Hnoi2010]City 城市建设

    Description PS国是一个拥有诸多城市的大国,国王Louis为城市的交通建设可谓绞尽脑汁.Louis可以在某些城市之间修建道路,在不同的城市之间修建道路需要不同的花费.Louis希望建造最少 ...

  7. BZOJ2001 [Hnoi2010]City 城市建设 【CDQ分治 + kruskal】

    题目链接 BZOJ2001 题解 CDQ分治神题... 难想难写.. 比较朴素的思想是对于每个询问都求一遍\(BST\),这样做显然会爆 考虑一下时间都浪费在了什么地方 我们每次求\(BST\)实际上 ...

  8. BZOJ2001: [Hnoi2010]City 城市建设

    题目:http://www.lydsy.com/JudgeOnline/problem.php?id=2001 cdq分治+重建图. 可以保留当前一定会被选的非修改边然后把点缩起来.这样的话每次点数至 ...

  9. 【bzoj2001】 Hnoi2010—City 城市建设

    http://www.lydsy.com/JudgeOnline/problem.php?id=2001 (题目链接) 题意 给出一张无向图,$m$组操作,每次修改一条边的权值,对于每次操作输出修改之 ...

随机推荐

  1. PHP 和 AJAX MySQL 数据库实例

    HTML 表单 <!DOCTYPE html> <html lang="en"> <head> <meta charset="U ...

  2. STM32F103RCT6移植到STM32F103C8T6注意事项

    1,修改IC为STC32F103C8 2,修改晶振为8.0M 3,修改C/C++宏定义,由STM32F10X_HD,USE_STDPERIPH_DRIVER 改为 STM32F10X_MD,USE_S ...

  3. Struts中类型转换踩的坑

    出现的异常: 当我输入的数据很大时候,转换后如上,这并不是我想要的, 出现问题的原因: Struts2对常用的数据类型如String.Integer.Double等都添加了转换器进行对应的转换操作. ...

  4. zookeeper curator CRUD

    目录 Curator客户端的基本操作 写在前面 1.1.1. Curator客户端的依赖包 1.1.2. Curator 创建会话 1.1.3. CRUD 之 Create 创建节点 1.1.4. C ...

  5. Django 之 admin组件使用&源码解析

    admin组件使用 Django 提供了基于 web 的管理工具. Django 自动管理工具是 django.contrib 的一部分.可以在项目的 settings.py 中的 INSTALLED ...

  6. 基于flask的web微信

    web微信 1.扫码获取头像 当你打开web微信的时候,因为http是无状态的,web微信如何实时的获取用户的扫码动作? 那么这里用到的是长轮询的方式. from flask import Flask ...

  7. java基础入门1到100的奇数求和

    /* Name:1-100所有奇数求和的程序 Power by Stuart Date:2015-4-23 */ public class DateTest01{ public static void ...

  8. (扫盲)RPC远程过程调用

    https://blog.csdn.net/mindfloating/article/details/39473807 https://blog.csdn.net/mindfloating/artic ...

  9. python基础12 ---函数模块2

    函数模块 一.sys函数模块详解 1.sys.argv[x] 功能:从程序外部接受参数,接收的参数个数可以是多个,在程序内部sys.argv吧这些外部参数转换成元组的形式,然后以索引x的方式在内部取出 ...

  10. UDP标准模型

    伪代码 #服务端 #创建UDP服务器 ss = socket() #创建一个服务器套接字 ss.bind() #绑定服务器套接字 inf_loop: #服务器无限循环 cs = ss.recvfrom ...