Learn how you can maximize big data in the cloud with Apache Hadoop. Download this eBook now. Brought to you in partnership with Hortonworks.

In February 2016, I presented a brand new talk at OOP in Munich: “Comparison of Frameworks and Tools for Big Data Log Analytics and IT Operations Analytics”. The focus of the talk is to discuss different open source frameworks, SaaS cloud offerings and enterprise products for analyzing big masses of distributed log events. This topic is getting much more traction these days with the emerging architecture concept of Microservices.

Key Take-Aways

  • Log Analytics enables IT Operations Analytics for Machine Data
  • Correlation of Events is the Key for Added Business Value
  • Log Management is complementary to other Big Data Components

Log Management with Papertrail, ELK Stack, TIBCO LogLogic, Splunk, etc.

Log Management has been a mature concept for many years; used for troubleshooting, root cause analysis, and solving security issues of devices such as web servers, firewalls, routers, databases, etc. In the meantime, it is also used for analyzing applications and distributed deployments using SOA or Microservices architectures.

The slide deck compares different solutions for log management:

IT Operations Analytics (ITOA) with TIBCO Unity

IT Operations Analytics is a new, very young market growing strongly (100% year-by-year, according to Gartner). In contrary to Log Management, it does not just focus on analyzing historical data, but also enables to make complex correlations of distributed data to allow predictive analytics in (near) real time. TIBCO Unity is a product heading into this direction. You can integrate log data, but also real time events (e.g. via TIBCO Hawk) to enable monitoring, analysis and complex correlation of distributed Microserices.

What about Apache Hadoop versus Log Management and ITOA?

Why not use just Apache Hadoop? You can also store and analyze all data on its cluster! Why not just use Log Collectors (such as Apache Flume) and send data directly to Hadoop without Log Analytics “in the middle”?

Here are some reasons… Log Management and ITOA tools.

  • Are an integrated solution for data analysis (tooling, consulting, support).
  • Are built exactly for these use cases.
  • Involve data indexing, data processing (querying) and data visualization by means of dashboards and other tools out-of-the-box.
  • Offer easy-of-use tooling and allow fast time-to-market / low TCO.

The following graphic shows the different concepts and when they are usually used:

Having said that, a better Hadoop integration is possible! It might make sense to leverage both together: the great tooling for Log Management, plus the Hadoop storage with very high scalability for really BIG data. For example, TIBCO Unity uses Apache Kafka under the hood to support processing and scaling millions of messages. Thus, integration with Hadoop storage might be possible in a future release…

Slides

Finally, here is my slide deck:

xxx

 
转自:https://dzone.com/articles/frameworks-and-products-big-data-log-analytics-log

大数据日志分析产品——SaaS Cloud, e.g. Papertrail, Loggly, Sumo Logic;Open Source Frameworks, e.g. ELK stack, Graylog;Enterprise Products, e.g. TIBCO LogLogic, IBM QRadar, Splunk的更多相关文章

  1. 大数据下BI产品如何发挥最大价值

    看到这个题目,你是否总感觉云里雾里?你是否真正懂什么叫“大数据”?商业智能BI和大数据又有着什么千丝万缕的联系?为什么说商业智能BI能在大数据中发挥价值? 大数据,指的是所涉及的数据资料量规模巨大到无 ...

  2. 在HDInsight中从Hadoop的兼容BLOB存储查询大数据的分析

    在HDInsight中从Hadoop的兼容BLOB存储查询大数据的分析 低成本的Blob存储是一个强大的.通用的Hadoop兼容Azure存储解决方式无缝集成HDInsight.通过Hadoop分布式 ...

  3. 第二篇:智能电网(Smart Grid)中的数据工程与大数据案例分析

    前言 上篇文章中讲到,在智能电网的控制与管理侧中,数据的分析和挖掘.可视化等工作属于核心环节.除此之外,二次侧中需要对数据进行采集,数据共享平台的搭建显然也涉及到数据的管理.那么在智能电网领域中,数据 ...

  4. [saiku] 使用 Apache Phoenix and HBase 结合 saiku 做大数据查询分析

    saiku不仅可以对传统的RDBMS里面的数据做OLAP分析,还可以对Nosql数据库如Hbase做统计分析. 本文简单介绍下一个使用saiku去查询分析hbase数据的例子. 1.phoenix和h ...

  5. 快速构建大数据存储分析平台-ELK平台安装

    一.概述 ELK是由Elastic公司开发的Elasticsearch.Logstash.Kibana三款开源软件的缩写(但不限于这三款软件). 为什么使用ELK? 在目前流行的微服务架构中,一个大型 ...

  6. mapReduce 大数据离线分析

    数据分析一般分为两种,一种是在线一种是离线 流程: 一般都是对于日志文件的采集和分析 场景实例(某个电商网站产生的用户访问日志(access.log)进行离线处理与分析的过程) 1.需求: 基于Map ...

  7. 大快DKH大数据智能分析平台监控参数说明

    2018年国内大数据公司50强榜单排名已经公布了出来,大快以黑马之姿闯入50强,并摘得多项桂冠.Hanlp自然语言处理技术也荣膺了“2018中国数据星技术”奖.对这份榜单感兴趣的可以找一下看看.本篇承 ...

  8. 基于 HTML5 WebGL 与 GIS 的智慧机场大数据可视化分析

    前言:大数据,人工智能,工业物联网,5G 已经或者正在潜移默化地改变着我们的生活.在信息技术快速发展的时代,谁能抓住数据的核心,利用有效的方法对数据做数据挖掘和数据分析,从数据中发现趋势,谁就能做到精 ...

  9. 基于 HTML5 WebGL 与 GIS 的智慧机场大数据可视化分析【转载】

    前言:大数据,人工智能,工业物联网,5G 已经或者正在潜移默化地改变着我们的生活.在信息技术快速发展的时代,谁能抓住数据的核心,利用有效的方法对数据做数据挖掘和数据分析,从数据中发现趋势,谁就能做到精 ...

随机推荐

  1. cocos2dx游戏 地图

    #include "HelloWorld.h" USING_NS_CC; CCScene* MyHelloWorld::scene() { // 'scene' is an aut ...

  2. nginx大量TIME_WAIT的解决办法 netstat -n | awk '/^tcp/ {++S[$NF]} END {for(a in S) print a, S[a]}'

    vi /etc/sysctl.conf net.ipv4.tcp_syncookies = 1 net.ipv4.tcp_tw_reuse=1 #让TIME_WAIT状态可以重用,这样即使TIME_W ...

  3. 一、任天堂ns (Nintendo Switch) 上手

    公司不方便回家详解做个博客非专业评测~

  4. 【转】Jenkins+Ant+Jmeter接口自动化集成测试实例

    出处:https://my.oschina.net/MrToStudy/blog/742251 一.Jenkins安装配置 1.安装配置JDK1.6+环境变量: 2.下载jenkins.war,放入C ...

  5. 最小生成树——Prim(普利姆)算法

    [0]README 0.1) 本文总结于 数据结构与算法分析, 源代码均为原创, 旨在 理解Prim算法的idea 并用 源代码加以实现: 0.2)最小生成树的基础知识,参见 http://blog. ...

  6. C语言基础知识【存储类】

    C 存储类1.存储类定义 C 程序中变量/函数的范围(可见性)和生命周期.这些说明符放置在它们所修饰的类型之前autoregisterstaticextern2.auto 只能用在函数内,即 auto ...

  7. hdu 5381 The sum of gcd 2015多校联合训练赛#8莫队算法

    The sum of gcd Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others) T ...

  8. C++, Java和C#的编译、链接过程解析

    总是感觉java是解释性语言,转载下一篇感觉写的容易理解的文章 转自 http://www.cnblogs.com/rush/p/3155665.html 1.1.1 摘要 我们知道计算机不能直接理解 ...

  9. Java语言实现简单FTP软件------>本地文件管理模块的实现(九)

    首先看一下界面: 1.本地文件列表的显示功能 将本地的当前目录下所有文件显示出来,并显示文件的属性包括文件名.大小.日期.通过javax.swing.JTable()来显示具体的数据.更改当前文件目录 ...

  10. 教你管理SQL备份与恢复系列(1-20)

    原链接:https://bbs.51cto.com/thread-1147908-1.html 教你备份与恢复数据库,直接下面下文档吧. 教你备份与恢复数据库(1)事务 http://bbs.51ct ...