题目描述

上体育课的时候,小蛮的老师经常带着同学们一起做游戏。这次,老师带着同学们一起做传球游戏。

游戏规则是这样的:nnn个同学站成一个圆圈,其中的一个同学手里拿着一个球,当老师吹哨子时开始传球,每个同学可以把球传给自己左右的两个同学中的一个(左右任意),当老师再次吹哨子时,传球停止,此时,拿着球没有传出去的那个同学就是败者,要给大家表演一个节目。

聪明的小蛮提出一个有趣的问题:有多少种不同的传球方法可以使得从小蛮手里开始传的球,传了mmm次以后,又回到小蛮手里。两种传球方法被视作不同的方法,当且仅当这两种方法中,接到球的同学按接球顺序组成的序列是不同的。比如有三个同学111号、222号、333号,并假设小蛮为111号,球传了333次回到小蛮手里的方式有111->222->333->111和111->333->222->111,共222种。

输入输出格式

输入格式:

一行,有两个用空格隔开的整数n,m(3≤n≤30,1≤m≤30)n,m(3 \le n \le 30,1 \le m \le 30)n,m(3≤n≤30,1≤m≤30)。

输出格式:

111个整数,表示符合题意的方法数。

输入输出样例

输入样例#1:
复制

3 3
输出样例#1: 复制

2

说明

40%的数据满足:3≤n≤30,1≤m≤203 \le n \le 30,1 \le m \le 203≤n≤30,1≤m≤20

100%的数据满足:3≤n≤30,1≤m≤303 \le n \le 30,1 \le m \le 303≤n≤30,1≤m≤30

2008普及组第三题

设dp[ i ][ j ]表示传了 j次到了 i 的手里;

普通的情况就是:

dp[ i ][ j ]=dp[ i-1 ][ j-1 ]+dp[ i+1 ][ j-1 ];特殊处理边界 1,n;

#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cstdlib>
#include<cstring>
#include<string>
#include<cmath>
#include<map>
#include<set>
#include<vector>
#include<queue>
#include<bitset>
#include<ctime>
#include<deque>
#include<stack>
#include<functional>
#include<sstream>
//#include<cctype>
//#pragma GCC optimize(2)
using namespace std;
#define maxn 200005
#define inf 0x7fffffff
//#define INF 1e18
#define rdint(x) scanf("%d",&x)
#define rdllt(x) scanf("%lld",&x)
#define rdult(x) scanf("%lu",&x)
#define rdlf(x) scanf("%lf",&x)
#define rdstr(x) scanf("%s",x)
typedef long long ll;
typedef unsigned long long ull;
typedef unsigned int U;
#define ms(x) memset((x),0,sizeof(x))
const long long int mod = 1e9 + 7;
#define Mod 1000000000
#define sq(x) (x)*(x)
#define eps 1e-4
typedef pair<int, int> pii;
#define pi acos(-1.0)
//const int N = 1005;
#define REP(i,n) for(int i=0;i<(n);i++)
typedef pair<int, int> pii;
inline ll rd() {
ll x = 0;
char c = getchar();
bool f = false;
while (!isdigit(c)) {
if (c == '-') f = true;
c = getchar();
}
while (isdigit(c)) {
x = (x << 1) + (x << 3) + (c ^ 48);
c = getchar();
}
return f ? -x : x;
} ll gcd(ll a, ll b) {
return b == 0 ? a : gcd(b, a%b);
}
int sqr(int x) { return x * x; } /*ll ans;
ll exgcd(ll a, ll b, ll &x, ll &y) {
if (!b) {
x = 1; y = 0; return a;
}
ans = exgcd(b, a%b, x, y);
ll t = x; x = y; y = t - a / b * y;
return ans;
}
*/ int n, m;
int dp[50][50]; int main() {
ios_base::sync_with_stdio(0);cin.tie(0);cout.tie(0);
cin >> n >> m;
dp[1][0] = 1;
for (int i = 1; i <= m; i++) {
dp[1][i] = dp[2][i - 1] + dp[n][i - 1];
for (int j = 2; j < n; j++)
dp[j][i] = dp[j - 1][i - 1] + dp[j + 1][i - 1];
dp[n][i] = dp[1][i - 1] + dp[n - 1][i - 1];
}
cout << dp[1][m] << endl;
return 0;
}

传球游戏 dp的更多相关文章

  1. 1233: 传球游戏 [DP]

    1233: 传球游戏 [DP] 时间限制: 1 Sec 内存限制: 128 MB 提交: 4 解决: 3 统计 题目描述 上体育课的时候,小蛮的老师经常带着同学们一起做游戏.这次,老师带着同学们一起做 ...

  2. P1057 传球游戏 dp

    题目描述 上体育课的时候,小蛮的老师经常带着同学们一起做游戏.这次,老师带着同学们一起做传球游戏. 游戏规则是这样的:nn个同学站成一个圆圈,其中的一个同学手里拿着一个球,当老师吹哨子时开始传球,每个 ...

  3. 洛谷 P1057 传球游戏 【dp】(经典)

    题目链接:https://www.luogu.org/problemnew/show/P1057 题目描述 上体育课的时候,小蛮的老师经常带着同学们一起做游戏.这次,老师带着同学们一起做传球游戏. 游 ...

  4. 蓝桥杯 传球游戏(dp)

    Description 上体育课的时候,小蛮的老师经常带着同学们一起做游戏.这次,老师带着同学们一起做传球游戏.游戏规则是这样的:n个同学站成一个圆圈,其中的一个同学手里拿着一个球,当老师吹哨子时开始 ...

  5. P1057 传球游戏——小学生dp

    P1057 传球游戏 设f[i][j]为第i次传到j的方案数: f[0][1]=1; 单独处理开头和结尾: #include<cstdio> #include<cstring> ...

  6. NOIP2008普及组传球游戏(动态规划)——yhx

    题目描述 上体育课的时候,小蛮的老师经常带着同学们一起做游戏.这次,老师带着同学们一起做传球游戏. 游戏规则是这样的:n个同学站成一个圆圈,其中的一个同学手里拿着一个球,当老师吹哨子时开始传球,每个同 ...

  7. NOIP2008 普及组T3 传球游戏 解题报告-S.B.S.

    题目描述 上体育课的时候,小蛮的老师经常带着同学们一起做游戏.这次,老师带着同学们一起做传球游戏. 游戏规则是这样的:n个同学站成一个圆圈,其中的一个同学手里拿着一个球,当老师吹哨子时开始传球,每个同 ...

  8. P1057 传球游戏

    题目描述 上体育课的时候,小蛮的老师经常带着同学们一起做游戏.这次,老师带着同学们一起做传球游戏. 游戏规则是这样的: nnn 个同学站成一个圆圈,其中的一个同学手里拿着一个球,当老师吹哨子时开始传球 ...

  9. 洛谷 P1057 传球游戏 解题报告

    P1057 传球游戏 题目描述 上体育课的时候,小蛮的老师经常带着同学们一起做游戏.这次,老师带着同学们一起做传球游戏. 游戏规则是这样的:n个同学站成一个圆圈,其中的一个同学手里拿着一个球,当老师吹 ...

随机推荐

  1. hibernate 延长加载范围

    1. 关闭延迟加载功能 lazy="false"2.修改抓取策略 fetch="join"直接查询关联数据,一个联接查询搞定3.使用Hibernate对象的in ...

  2. Oracle 11g oracle 用户密码过期问题 (ZT)

    http://www.blogjava.net/freeman1984/archive/2013/04/23/398301.html Oracle 11g 之前默认的用户时是没有密码过期的限制的,在O ...

  3. Android 自定义带回调的Dialog 及EditText相关

      import android.app.Activity; import android.content.Context; import android.text.Editable; import ...

  4. DOM详习讲解

    http://www.cnblogs.com/wupeiqi/articles/5643298.html 

  5. PROCEDURE存储过程传入表参数

    ) ,itemNum ) ,itemQty )) ---2.创建一个存储过程以表值参数作为输入 alter proc usp_TestProcWithTable     @tb  LocationTa ...

  6. 【总结整理】WebGIS学习-thinkGIS(三):关于影像金字塔、瓦片行列号、分辨率resolution

    http://www.thinkgis.cn/topic/541a5206da8db186fd0673ba 1.前言 在上一节中我们知道了屏幕上一像素等于实际中多少单位长度(米或经纬度)的换算方法,而 ...

  7. JavaScript基础笔记集合(转)

    JavaScript基础笔记集合   JavaScript基础笔记集合   js简介 js是脚本语言.浏览器是逐行的读取代码,而传统编程会在执行前进行编译   js存放的位置 html脚本必须放在&l ...

  8. strrpos()和strripos()函数【PHP】

    strripos() 函数 定义和用法 strripos() 函数查找字符串在另一个字符串中最后一次出现的位置. 如果成功,则返回位置,否则返回 false. 语法 strrpos(string,fi ...

  9. session,cookie总结

    不同的域名生成的session_id是不一样的,(就算是相同的主域,例如:www.test.com, blog.test.com 都不一样); 相同的主域,不同的二级域名,例如www和blog都是不共 ...

  10. ARC102D All Your Paths are Different Lengths

    传送门 题目大意 让你构造一个有向图,使得从1到n有L条不同路径且长度分别是0~L-1. 分析 我们不难想到每一对相邻点之间连一条权值为0的边,之后二进制分解,将每一对点之间连一个权值为2^i的边,但 ...