http://acm.hdu.edu.cn/showproblem.php?pid=4609

给一堆边,求这一堆边随便挑三个能组成三角形的概率。

裸fft,被垃圾题解坑了还以为很难。

最长的边的长度小于其余两边之和是组成三角形的充要条件,fft搞搞就行了。

 #include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cmath>
#include<complex>
using namespace std;
#define LL long long
const int maxn=;
double Pi;
typedef complex< double >cd;
cd b[maxn]={};
LL a[maxn]={},cnt[maxn]={};
int bel[maxn]={},s,bt;
void getit(){for(int i=;i<s;++i)bel[i]=(bel[i>>]>>)|((i&)<<(bt-));}
void fft(cd *c,int n,int dft){
for(int i=;i<n;++i)if(bel[i]>i)swap(c[i],c[bel[i]]);
for(int step=;step<n;step<<=){
cd w=cd(cos(Pi/(double)step),sin(Pi/(double)step)*(double)dft);
for(int j=;j<n;j+=(step<<)){
cd z=cd(1.0,);
for(int i=j;i<j+step;++i){
cd x=c[i],y=c[i+step]*z;
c[i]=x+y;c[i+step]=x-y;
z=z*w;
}
}
}
if(dft==-)for(int i=;i<n;++i)c[i]/=n;
}
int main(){
Pi=acos(-1.0);
int T;scanf("%d",&T);
while(T-->){
int n;scanf("%d",&n);
memset(cnt,,sizeof(cnt));
for(int i=;i<n;++i){scanf("%d",&a[i]);cnt[a[i]]+=;} sort(a,a+n); int siz=a[n-]+;
for(int i=;i<siz;++i)b[i]=cd(cnt[i],);
for(int i=siz;i<s;++i)b[i]=cd(,); siz*=; bt=; s=; for(;s<siz;++bt)s<<=; getit();
fft(b,s,);
for(int i=;i<s;++i)b[i]=b[i]*b[i];
fft(b,s,-);
for(int i=;i<=s;++i)cnt[i]=(LL)(b[i].real()+0.5);
for(int i=;i<s;++i)b[i]=cd(,); s=a[n-]*;
for(int i=;i<n;++i)--cnt[a[i]*];
for(int i=;i<=s;++i)cnt[i]/=;
for(int i=;i<=s;++i)cnt[i]+=cnt[i-]; LL ans=;
for(int i=;i<n;++i){
ans+=cnt[s]-cnt[a[i]];
ans-=(LL)(n--i)*i;
ans-=n-;
ans-=(LL)(n--i)*(n-i-)/;
}
LL sum=(LL)n*(n-)*(n-)/;
printf("%.7f\n",(double)(ans)/(double)(sum));
}
return ;
}

HDU 4709 3-idiots FFT 多项式的更多相关文章

  1. 51NOD 1258 序列求和 V4 [任意模数fft 多项式求逆元 伯努利数]

    1258 序列求和 V4 题意:求\(S_m(n) = \sum_{i=1}^n i^m \mod 10^9+7\),多组数据,\(T \le 500, n \le 10^{18}, k \le 50 ...

  2. bzoj 3513: [MUTC2013]idiots FFT

    bzoj 3513: [MUTC2013]idiots FFT 链接 bzoj 思路 参考了学姐TRTTG的题解 统计合法方案,最后除以总方案. 合法方案要不好统计,统计不合法方案. \(a+b< ...

  3. hdu 4709:Herding(叉积求三角形面积+枚举)

    Herding Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Sub ...

  4. 学习数论 HDU 4709

    经过杭师大校赛的打击,明白了数学知识的重要性 开始学习数论,开始找题练手 Herding HDU - 4709 Little John is herding his father's cattles. ...

  5. hdu 5730 Shell Necklace [分治fft | 多项式求逆]

    hdu 5730 Shell Necklace 题意:求递推式\(f_n = \sum_{i=1}^n a_i f_{n-i}\),模313 多么优秀的模板题 可以用分治fft,也可以多项式求逆 分治 ...

  6. HDU 1402 A * B Problem Plus 快速傅里叶变换 FFT 多项式

    http://acm.hdu.edu.cn/showproblem.php?pid=1402 快速傅里叶变换优化的高精度乘法. https://blog.csdn.net/ggn_2015/artic ...

  7. hdu 5142 NPY and FFT

    题目连接 http://acm.hdu.edu.cn/showproblem.php?pid=5142 NPY and FFT Description A boy named NPY is learn ...

  8. HDU 4609 3-idiots(FFT)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4609 题意:给出n个正整数(数组A).每次随机选出三个数.问这三个数能组成三角形的概率为多大? 思路: ...

  9. hdu - 4709 - Herding

    题意:给出N个点的坐标,从中取些点来组成一个多边形,求这个多边形的最小面积,组不成多边形的输出"Impossible"(测试组数 T <= 25, 1 <= N < ...

随机推荐

  1. MySQL的DML常用语法格式

    MySQL的DML常用语法格式 作者:尹正杰 版权声明:原创作品,谢绝转载!否则将追究法律责任. 我们知道MySQL的查询大致分为单表查询,多表查询以及联合查询.多表查询,顾名思义,就是查询的结果可能 ...

  2. 数学:拓展Lucas定理

    拓展Lucas定理解决大组合数取模并且模数为任意数的情况 大概的思路是把模数用唯一分解定理拆开之后然后去做 然后要解决的一个子问题是求模质数的k次方 将分母部分转化成逆元再去做就好了 这里贴一份别人的 ...

  3. SimpleRoundedImage-不使用mask实现圆角矩形图片

    1.一张图片是如何显示在屏幕上的 一张图片渲染到unity界面中的大致流程. 2.我们要做什么 我们要做的就是在CPU中将图片的矩形顶点数据修改成圆角矩形的顶点信息,之后Unity会将修改后的顶点数据 ...

  4. javascript 简单工厂模式

    var Bicycle = new Interface("Bicycle",["assemble","wash","ride&qu ...

  5. Export SQLite data to Excel in iOS programmatically(OC)

    //For the app I have that did this, the SQLite data was fairly large. Therefore, I used a background ...

  6. codeforces 235 div2 B. Sereja and Contests

    Sereja is a coder and he likes to take part in Codesorfes rounds. However, Uzhland doesn't have good ...

  7. 解决Winsock2.h和afxsock.h定义冲突的办法

    如果我们在工程中使用了afxsock.h,但在其它的地方又加了些 使用winsock2.h,哈哈,VC会告诉你一大堆错误,大意就是有定义重复,该怎么解决? 由于MFC的SOCKET类使用的是Winso ...

  8. sql 跨服务器查询数据

    方法一:用OPENDATASOURCE [SQL SERVER] 跨服务器查询 --1 打开 reconfigure reconfigure SELECT * FROM OPENDATASOURCE( ...

  9. decimal模块

    简介 decimal意思为十进制,这个模块提供了十进制浮点运算支持. 常用方法 1.可以传递给Decimal整型或者字符串参数,但不能是浮点数据,因为浮点数据本身就不准确. 2.要从浮点数据转换为De ...

  10. Dream------Hadoop--网络拓扑与Hadoop--摘抄

    两个节点在一个本地网络中被称为“彼此的近邻”是什么意思?在高容量数据处理中,限制因素是我们在节点间 传送数据的速率-----带宽很稀缺.这个想法便是将两个节点间的带宽作为距离的衡量标准.   衡量节点 ...