Predict the Winner LT486
Given an array of scores that are non-negative integers. Player 1 picks one of the numbers from either end of the array followed by the player 2 and then player 1 and so on. Each time a player picks a number, that number will not be available for the next player. This continues until all the scores have been chosen. The player with the maximum score wins.
Given an array of scores, predict whether player 1 is the winner. You can assume each player plays to maximize his score.
Example 1:
Input: [1, 5, 2]
Output: False
Explanation: Initially, player 1 can choose between 1 and 2.
If he chooses 2 (or 1), then player 2 can choose from 1 (or 2) and 5. If player 2 chooses 5, then player 1 will be left with 1 (or 2).
So, final score of player 1 is 1 + 2 = 3, and player 2 is 5.
Hence, player 1 will never be the winner and you need to return False.
Example 2:
Input: [1, 5, 233, 7]
Output: True
Explanation: Player 1 first chooses 1. Then player 2 have to choose between 5 and 7. No matter which number player 2 choose, player 1 can choose 233.
Finally, player 1 has more score (234) than player 2 (12), so you need to return True representing player1 can win.
Note:
- 1 <= length of the array <= 20.
- Any scores in the given array are non-negative integers and will not exceed 10,000,000.
- If the scores of both players are equal, then player 1 is still the winner.
Idea 1.a backtracking with memory. For the first player to win, the score score1 >= score2 for the second player, while score1 + score2 = sum of all scores in the array, it mean score1 * 2 >= sum. Let dp(a, b) represent the maxmum score of player1 when choosing in the range nums[a, b], based on the observation and -max(-a, -b) = min(a, b), we can get the followig equation:
dp(a, b) = max(sum(a, b) - dp(a+1, b), sum(a, b) - dp(a, b-1))
= max(nums[a] - max(-dp(a+2, b), -dp(a+1, b-1),
nums[b] - max(-dp(a+1, b-1), -dp(a, b-2)))
= max(nums[a] + min(dp(a+2, b), dp(a+1, b-1)),
nums[b] + min(dp(a+1, b-1), dp(a, b-2)))
Time complexity: O(n2)
Space complexity: O(n2)
class Solution {
private int maxScoreForRange(int[] nums, int a, int b, int[][] maxScores) {
if(a > b) {
return 0;
}
if(maxScores[a][b] == 0) {
int scoreA = nums[a] + Math.min(maxScoreForRange(nums, a+2, b, maxScores), maxScoreForRange(nums, a+1, b-1, maxScores));
int scoreB = nums[b] + Math.min(maxScoreForRange(nums, a+1, b-1, maxScores), maxScoreForRange(nums, a, b-2, maxScores));
maxScores[a][b] = Math.max(scoreA, scoreB);
}
return maxScores[a][b];
}
public boolean PredictTheWinner(int[] nums) {
int sum = 0;
for(int num: nums) {
sum += num;
}
int[][] maxScores = new int[nums.length][nums.length];
if(maxScoreForRange(nums, 0, nums.length-1, maxScores) * 2 >= sum) {
return true;
}
return false;
}
}
Idea 1.b, recursion, based on the idea that score1 >= score2, score1 - score2 >= 0, avoid the computation to calculate the sum. We use turn to represent player1 (turn =1 ) and player2(turn = -1), and switch turn based on the player.
Note: the returned value is given by turn * max(turn*b, turn *b), equivalently max(a, b) for player1's turn and min(a, b) for player2's turn.
Time complexity: O(2^n), size of recursion tree is 2^n
Space complexity: O(n) the depth of the recursion tree
class Solution {
private int differenceForRange(int[] nums, int a, int b, int turn) {
if(a > b) {
return 0;
}
int scoreA = turn * nums[a] + differenceForRange(nums, a+1, b, -turn);
int scoreB = turn * nums[b] + differenceForRange(nums, a, b-1, -turn);
return turn * Math.max(turn * scoreA, turn * scoreB);
}
public boolean PredictTheWinner(int[] nums) {
if(differenceForRange(nums, 0, nums.length-1, 1) >= 0) {
return true;
}
return false;
}
}
with variable turn, add the choice when it's player1's turn, subtract the choice when it's player2's turn.
Time complexity: O(2^n)
Space complexity: O(n)
class Solution {
private int differenceForRange(int[] nums, int a, int b) {
if(a > b) {
return 0;
}
int scoreA = nums[a] - differenceForRange(nums, a+1, b);
int scoreB = nums[b] - differenceForRange(nums, a, b-1);
return Math.max(scoreA, scoreB);
}
public boolean PredictTheWinner(int[] nums) {
return differenceForRange(nums, 0, nums.length-1) >= 0;
}
}
Idea 1.c recusion + memory
Time complexity: O(n2)
Space complexity: O(n2)
class Solution {
private int differenceForRange(int[] nums, int a, int b, Integer[][] diffScores) {
if(a > b) {
return 0;
}
if(diffScores[a][b] == null) {
int scoreA = nums[a] - differenceForRange(nums, a+1, b, diffScores);
int scoreB = nums[b] - differenceForRange(nums, a, b-1, diffScores);
diffScores[a][b] = Math.max(scoreA, scoreB);
}
return diffScores[a][b];
}
public boolean PredictTheWinner(int[] nums, Integer[][] diffScores) {
Integer[][] diffScores = new Integer[nums.length][nums.length];
return differenceForRange(nums, 0, nums.length-1, diffScores) >= 0;
}
}
Idea 2. Dynamic programming based on the equation about diffence on score:
dp(a, b) = Math.max(nums[a] - dp(a+1, b), nums[b] - dp(a, b-1))
class Solution {
public boolean PredictTheWinner(int[] nums) {
int[][] scores = new int[nums.length][nums.length];
for(int i = nums.length-1; i >= 0; --i) {
scores[i][i] = nums[i];
for(int len = 2; i + len - 1 < nums.length; ++len) {
int j = i + len - 1;
scores[i][j] = Math.max(nums[i] - scores[i+1][j],
nums[j] - scores[i][j-1]);
}
}
return scores[0][nums.length-1] >= 0;
}
}
Time complexity: O(n2)
Space complexity: O(n2)
Idea 3. Based on the above equation, we can use row instead of matrix by updating from left to right as previous value on the same row is needed and down to up as traversing the hidden matrix via a row.
row(b) = max(nums[a] - row(b_old), nums[b] - row[b-1])
Time complexity: O(n2)
Space complexity: O(n)
class Solution {
public boolean PredictTheWinner(int[] nums) {
int[] row = new int[nums.length];
for(int i = nums.length-1; i >= 0; --i) {
row[i] = nums[i];
for(int len = 2; i + len - 1 < nums.length; ++len) {
int j = i + len - 1;
row[j] = Math.max(nums[i] - row[j],
nums[j] - row[j-1]);
}
}
return row[nums.length-1] >= 0;
}
}
python:
class Solution:
def DiffScoresForRange(self, nums: List[int], a: int, b: int, diffScores) -> int:
if a > b:
return 0 if diffScores[a][b] == None :
scoreA = nums[a] - self.DiffScoresForRange(nums, a+1, b, diffScores)
scoreB = nums[b] - self.DiffScoresForRange(nums, a, b-1, diffScores)
diffScores[a][b] = max(scoreA, scoreB) return diffScores[a][b] def PredictTheWinner(self, nums: List[int]) -> bool:
diffScores = [[None for j in range(len(nums))] for i in range(len(nums))]
return self.DiffScoresForRange(nums, 0, len(nums)-1, diffScores) >= 0
class Solution:
def PredictTheWinner(self, nums: List[int]) -> bool:
diffScores = [[0 for j in range(len(nums))] for i in range(len(nums))] for i in range(len(nums)-1, -1, -1):
diffScores[i][i] = nums[i]
for length in range(2, len(nums)+1-i, 1):
j = i + length - 1
diffScores[i][j] = max(nums[i] - diffScores[i+1][j],
nums[j] - diffScores[i][j-1]) return diffScores[0][len(nums)-1] >= 0
class Solution:
def PredictTheWinner(self, nums: List[int]) -> bool:
row = [0 for i in range(len(nums))] for i in range(len(nums)-1, -1, -1):
row[i] = nums[i]
for length in range(2, len(nums)+1-i, 1):
j = i + length - 1
row[j] = max(nums[i] - row[j],
nums[j] - row[j-1]) return row[len(nums)-1] >= 0
Predict the Winner LT486的更多相关文章
- LN : leetcode 486 Predict the Winner
lc 486 Predict the Winner 486 Predict the Winner Given an array of scores that are non-negative inte ...
- LC 486. Predict the Winner
Given an array of scores that are non-negative integers. Player 1 picks one of the numbers from eith ...
- Leetcode之动态规划(DP)专题-486. 预测赢家(Predict the Winner)
Leetcode之动态规划(DP)专题-486. 预测赢家(Predict the Winner) 给定一个表示分数的非负整数数组. 玩家1从数组任意一端拿取一个分数,随后玩家2继续从剩余数组任意一端 ...
- 【LeetCode】486. Predict the Winner 解题报告(Python)
[LeetCode]486. Predict the Winner 解题报告(Python) 标签(空格分隔): LeetCode 作者: 负雪明烛 id: fuxuemingzhu 个人博客: ht ...
- [LeetCode] Predict the Winner 预测赢家
Given an array of scores that are non-negative integers. Player 1 picks one of the numbers from eith ...
- [Swift]LeetCode486. 预测赢家 | Predict the Winner
Given an array of scores that are non-negative integers. Player 1 picks one of the numbers from eith ...
- Minimax-486. Predict the Winner
Given an array of scores that are non-negative integers. Player 1 picks one of the numbers from eith ...
- 动态规划-Predict the Winner
2018-04-22 19:19:47 问题描述: Given an array of scores that are non-negative integers. Player 1 picks on ...
- 486. Predict the Winner
Given an array of scores that are non-negative integers. Player 1 picks one of the numbers from eith ...
随机推荐
- spring分页
1.Brand 商品品牌类 public class Brand { private Integer id; private String name; private String descripti ...
- java面试题:基础知识
类和对象 Q:讲一下面向对象OOP思想. 面向对象主要是抽象,封装,继承,多态. 多态又分为重载和重写.重载主要是方法参数类型不一样,重写则是方法内容不一样. Q:抽象类和接口有什么区别? 抽象类中可 ...
- 超详细 Nginx 极简教程
什么是Nginx? Nginx (engine x) 是一款轻量级的Web 服务器 .反向代理服务器及电子邮件(IMAP/POP3)代理服务器. 什么是反向代理? 反向代理(Reverse Proxy ...
- LightOJ - 1030 期望+dp
题目链接:https://vjudge.net/problem/25907/origin 一个山洞,里面有有1到n个位置,每个位置都有一定的金币,你有一个六面的骰子,一开始你在1,每次摇到了哪个数就往 ...
- Jmeter cookie不兼容问题
历史脚本,今天准备执行测试,报出这种错误 解决方案:HTTP Cookie Manager里的 Cookie Policy 由rfc2109设置为兼容模式(Compatibility) 参考:http ...
- importlib的用法
这个模块可以通过字符串导入模块 比如我们有下面的例子 需要导入的模块的代码 在test_import目录下有一个test1的py文件 name = "中国是个大傻逼" class ...
- ubuntu下安装mysql及常用操作
1.可通过ps -ef | grep mysql命令查看系统中是否有安装mysql 如果出现类似上述的页面,就证明是已经安装过了mysql,否则就是没有. 2.安装mysql 很简单,只需要键入如下命 ...
- shell条件控制和循环结构
一.简介 Shell编程中循环命令用于特定条件下决定某些语句重复执行的控制方式,有三种常用的循环语句:for.while和until.while循环和for循环属于“当型循环”,而until属于“直到 ...
- php 图像处理函数
gd_info 函数:获取当前安装的GD库的信息 getimagesize 函数:获取图像的大小 image_type_to_extension 函数:获取图像类型的文件后缀 ima ...
- pthreads v3下的Volatile介绍与使用
由于pthreads v3中引入了Threaded对象自动不变性的概念,所以当我们在构造函数中给成员设置为数组时,在其他地方就无法对成员再次改写了. 例子如下: <?php //pthreads ...