题目来源:http://www.fjutacm.com/Problem.jsp?pid=3283

题意:给两串长度为n的数组a和b,视为环,a和b可以在任意位置开始互相匹配得到这个函数的值,求这个函数的值最大是多少;

很明显是FFT,但是数据范围是n是1e5,a[i]和b[i]是1e6;精度会丢很多,也就是要NTT解决,那么要选一个不会影响答案的P,因为最大值为1e5*1e6*1e6;那么我们选一个1e17以上的就差不多了,然后就是求循环卷积的步骤,对此,我建议你们算一下这个,[a1、a2、a3、a1、a2、a3]*[b1、b2、b3],列出全部结果(乘法一样的操作,注意每一位乘法的偏移位置),你会发现得到的新集合去掉头上n-1个以及尾部n-1个就可以得到全部的线性卷积组合,那么我们就可以求那个两个数组的卷积得到的数组里直接找最大:

 #include<stdio.h>
#include<stdlib.h>
#include<string.h>
#include<algorithm>
using namespace std;
typedef long long ll;
const ll PMOD=(27ll<<)+, PR=;
const int N=1e6+;
static ll qp[];
ll res[N];
inline ll Mul(ll a,ll b){
if(a>=PMOD)a%=PMOD;
if(b>=PMOD)b%=PMOD;
return (a*b-(ll)(a/(long double)PMOD*b+1e-)*PMOD+PMOD)%PMOD;
}
struct NTT__container{
NTT__container( ){
int t,i;
for( i=; i<; i++){///注意循环上界与2n次幂上界相同
t=<<i;
qp[i]=quick_pow(PR,(PMOD-)/t);
}
}
ll quick_pow(ll x,ll n){
ll ans=;
while(n){
if(n&)
ans=Mul(ans,x);
x=Mul(x,x);
n>>=;
}
return ans;
}
int get_len(int n){///计算刚好比n大的2的N次幂
int i,len;
for(i=(<<); i; i>>=){
if(n&i){
len=(i<<);
break;
}
}
return len;
}
inline void NTT(ll F[],int len,int type){
int id=,h,j,k,t,i;
ll E,u,v;
for(i=,t=; i<len; i++){///逆位置换
if(i>t) swap(F[i],F[t]);
for(j=(len>>); (t^=j)<j; j>>=);
}
for( h=; h<=len; h<<=){///层数
id++;
for( j=; j<len; j+=h){///遍历这层上的结点
E=;///旋转因子
for(int k=j; k<j+h/; k++){///遍历结点上的前半序列
u=F[k];///A[0]
v=Mul(E,F[k+h/]);///w*A[1]
///对偶计算
F[k]=(u+v)%PMOD;
F[k+h/]=((u-v)%PMOD+PMOD)%PMOD;
///迭代旋转因子
E=Mul(E,qp[id]);///qp[id]是2^i等分因子
}
}
}
if(type==-){
int i;
ll inv;
for(i=; i<len/; i++)///转置,因为逆变换时大家互乘了对立点的因子
swap(F[i],F[len-i]);
inv=quick_pow(len,PMOD-);///乘逆元还原
for( i=; i<len; i++)
F[i]=Mul(F[i],inv);
}
}
void mul(ll x[],ll y[],int len){///答案存在x中
int i;
NTT(x,len,);///先变换到点值式
NTT(y,len,);///先变换到点值式上
for(i=; i<len; i++)
x[i]=Mul(x[i],y[i]);///在点值上点积
NTT(x,len,-);///再逆变换回系数式
}
} cal;
ll a[N], b[N];
int main() {
int n;
scanf("%d",&n);
for(int i=;i<n;i++)
scanf("%lld",a+i), a[i+n]=a[i];
for(int i=;i<n;i++)
scanf("%lld",&b[n--i]);
int len=cal.get_len(n+n+n);
cal.mul(a, b, len);
ll mx=;
for(int i=;i<len;i++){///完整的组合肯定更大所以说直接找最大
if(mx<a[i]){
mx=a[i];
}
}
printf("%lld\n",mx);
return ;
}

时间:1036MS 内存: 23632KB

还有优化的解法,这我真不知道为什么,可能是因为前后相加刚好可以组合出全部组合:

 #include<stdio.h>
#include<stdlib.h>
#include<string.h>
#include<algorithm>
using namespace std;
typedef long long ll;
const ll PMOD=(27ll<<)+, PR=;
const int N=1e6+;
static ll qp[];
ll res[N];
inline ll Mul(ll a,ll b){
if(a>=PMOD)a%=PMOD;
if(b>=PMOD)b%=PMOD;
//if(n<=1000000000)return a*b%n;
return (a*b-(ll)(a/(long double)PMOD*b+1e-)*PMOD+PMOD)%PMOD;
}
struct NTT__container{
NTT__container( ){
int t,i;
for(i=; i<; i++){///注意循环上界与2n次幂上界相同
t=<<i;
qp[i]=quick_pow(PR,(PMOD-)/t);
}
}
ll quick_pow(ll x,ll n){
ll ans=;
while(n){
if(n&)
ans=Mul(ans,x);
x=Mul(x,x);
n>>=;
}
return ans;
}
int get_len(const int &n){///计算刚好比n大的2的N次幂
int i, len;
for(i=(<<); i; i>>=){
if(n&i){
len=(i<<);break;
}
}
return len;
}
inline void NTT(ll F[], const int &len, int type){
int id=, h, j, t, i;
ll E,u,v;
for(i=,t=; i<len; i++){///逆位置换
if(i>t) swap(F[i],F[t]);
for(j=(len>>); (t^=j)<j; j>>=);
}
for( h=; h<=len; h<<=){///层数
id++;
for( j=; j<len; j+=h){///遍历这层上的结点
E=;///旋转因子
for(int k=j; k<j+h/; k++){///遍历结点上的前半序列
u=F[k];///A[0]
v=Mul(E,F[k+h/]);///w*A[1]
///对偶计算
F[k]=(u+v)%PMOD;
F[k+h/]=((u-v)%PMOD+PMOD)%PMOD;
///迭代旋转因子
E=Mul(E,qp[id]);///qp[id]是2^i等分因子
}
}
}
if(type==-){
int i;
ll inv;
for(i=; i<len/; i++)///转置,因为逆变换时大家互乘了对立点的因子
swap(F[i],F[len-i]);
inv=quick_pow(len,PMOD-);///乘逆元还原
for( i=; i<len; i++)
F[i]=Mul(F[i],inv);
}
}
void mul(ll x[],ll y[],int len){///答案存在x中
int i;
NTT(x,len,);///先变换到点值式
NTT(y,len,);///先变换到点值式上
for(i=; i<len; i++)
x[i]=Mul(x[i],y[i]);///在点值上点积
NTT(x,len,-);///再逆变换回系数式
}
} cal;
ll a[N], b[N];
int main() {
int n;
scanf("%d",&n);
for(int i=;i<n;i++)
scanf("%lld",a+i);
for(int i=;i<n;i++)
scanf("%lld",&b[n--i]);
int len=cal.get_len(n+n);
cal.mul(a, b, len);
ll mx=;
for(int i=;i<len;i++){
a[i]+=a[i+n];
if(mx<a[i]){
mx=a[i];
}
}
printf("%lld\n",mx);
return ;
}

时间:560MS 内存:23632KB

第八集:魔法阵 NTT求循环卷积的更多相关文章

  1. 【DFS】佳佳的魔法阵

    [vijos1284]佳佳的魔法阵 背景 也许是为了捕捉猎物(捕捉MM?),也许是因为其它原因,总之,佳佳准备设计一个魔法阵.而设计魔法阵涉及到的最关键问题,似乎就是那些带有魔力的宝石的摆放…… 描述 ...

  2. [NOIP2016普及组]魔法阵

    题目:洛谷P2119.Vijos P2012.codevs5624. 题目大意:有n件物品,每件物品有个魔法值.要求组成魔法阵(Xa,Xb,Xc,Xd),该魔法阵要满足Xa<Xb<Xc&l ...

  3. P2119 魔法阵

    原题链接  https://www.luogu.org/problemnew/show/P2119 YY同学今天上午给我们讲了这个题目,我觉得她的思路很好,特此写这篇博客整理一下. 50分:暴力枚举 ...

  4. 「Vijos 1284」「OIBH杯NOIP2006第二次模拟赛」佳佳的魔法阵

    佳佳的魔法阵 背景 也许是为了捕捉猎物(捕捉MM?),也许是因为其它原因,总之,佳佳准备设计一个魔法阵.而设计魔法阵涉及到的最关键问题,似乎就是那些带有魔力的宝石的摆放-- 描述 魔法阵是一个\(n ...

  5. 【做题记录】[NOIP2016 普及组] 魔法阵

    P2119 魔法阵 2016年普及组T4 题意: 给定一系列元素 \(\{X_i\}\) ,求满足以下不等式的每一个元素作为 \(a,b,c,d\) 的出现次数 . \[\begin{cases}X_ ...

  6. 洛谷 P2119 魔法阵

    题目描述 六十年一次的魔法战争就要开始了,大魔法师准备从附近的魔法场中汲取魔法能量. 大魔法师有mm个魔法物品,编号分别为1,2,...,m1,2,...,m.每个物品具有一个魔法值,我们用X_iXi ...

  7. [luogu2119]魔法阵 NOIP2016T4

    很好的一道数学推导题 45分做法 $O(N^4)$暴力枚举四个材料 55分做法 从第一个约束条件可得到所有可行答案都是单调递增的,所以可以排序一遍,减少枚举量,可以拿到55分 100分做法 首先可以发 ...

  8. ZOJ 3962 Seven Segment Display 16进制的八位数加n。求加的过程中所有的花费。显示[0,F]有相应花费。

    Seven Segment Display Time Limit: Seconds Memory Limit: KB A seven segment display, or seven segment ...

  9. 洛谷P2119 魔法阵

    P2119 魔法阵 题目描述 六十年一次的魔法战争就要开始了,大魔法师准备从附近的魔法场中汲取魔法能量. 大魔法师有m个魔法物品,编号分别为1,2,...,m.每个物品具有一个魔法值,我们用Xi表示编 ...

随机推荐

  1. RYU 的选择以及安装

    RYU 的选择以及安装 由于近期的项目需求,不得已得了解一下控制器内部发现拓扑原理,由于某某应用中的控制器介绍中使用的RYU,所以打算把RYU装一下试试.出乎意料的是,RYU竟是我之前装过最最轻便的控 ...

  2. 分析code

    1 using System; //跟系统说明一下可能会用到这个dll里面的东西 using System.Collections.Generic; //引用集合类命名空间 using System. ...

  3. Beta冲刺——day4

    Beta冲刺--day4 作业链接 Beta冲刺随笔集 github地址 团队成员 031602636 许舒玲(队长) 031602237 吴杰婷 031602220 雷博浩 031602134 王龙 ...

  4. phaser3 微信小游戏入门

    phaser与eget, laya, pixi.js本质上没什么区别. 都是渲染引擎.  其它的都是配角.  phaser的特点是.代码容易理解 功能比较全面. 个人比较喜欢phaser的地方 twe ...

  5. Ubuntu17安装maven3.5.2

    1.下载maven 源码文件.tar.gz 2.解压源文件sudo tar -zxvf .tar.gz文件 3.配置/etc/profile文件 export MAVEN_HOME=/app/java ...

  6. Spring之配置文件中引入其它配置文件

    <beans> ... <!--引入其它配置文件--> <import resource="classpath:com/helloworld/beans.xml ...

  7. C#快速删除bin和obj文件夹的方法

    C#程序总会生成bin和obj文件夹,为了减小源码的大小,就有必要将这两个文件夹删除,于是想到用批处理文件来删除. 以下是批处理的代码: @echo offset nowPath=%cd%cd /cd ...

  8. 一本通1641【例 1】矩阵 A×B

    1641: [例 1]矩阵 A×B sol:矩阵乘法模板.三个for循环 #include <bits/stdc++.h> using namespace std; typedef lon ...

  9. HGOI 20181103 题解

    problem:把一个可重集分成两个互异的不为空集合,两个集合里面的数相乘的gcd为1(将集合中所有元素的质因数没有交集) solution:显然本题并不是那么容易啊!考场上想了好久.. 其实转化为上 ...

  10. 前端学习 -- Css -- 有序列表和无序列表

    列表就相当于去超市购物时的那个购物清单, 在HTML也可以创建列表,在网页中一共有三种列表: 1.无序列表 2.有序列表 3.定义列表 无序列表 - 使用ul标签来创建一个无序列表 - 使用li在ul ...