洛谷 2257 - YY的GCD
莫比乌斯反演半模板题
很容易可以得到
\]
那么现在由于想要进行整除分块,所以希望将 \(\sum\) 内部的向下取整部分移到外部,故令 \(T = dp\) ,则有
\]
那么用筛法预处理一下 \(\mu\) 的那一部分就可以直接整除分块了
代码
#include <iostream>
#include <cstdio>
#include <cstring>
using namespace std;
typedef long long LL;
const int MAXN = 1e07 + 10;
int prime[MAXN];
int vis[MAXN]= {0};
int pcnt = 0;
int mu[MAXN]= {0};
LL tsum[MAXN]= {0}, sum[MAXN]= {0};
const int MAX = 1e07;
void prime_Acqu () {
mu[1] = 1;
for (int i = 2; i <= MAX; i ++) {
if (! vis[i]) {
prime[++ pcnt] = i;
mu[i] = - 1;
}
for (int j = 1; j <= pcnt && i * prime[j] <= MAX; j ++) {
vis[i * prime[j]] = 1;
if (! (i % prime[j]))
break;
mu[i * prime[j]] = - mu[i];
}
}
for (int j = 1; j <= pcnt; j ++)
for (int i = 1; i * prime[j] <= MAX; i ++)
tsum[i * prime[j]] += mu[i];
for (int i = 1; i <= MAX; i ++)
sum[i] = sum[i - 1] + tsum[i];
}
LL Calc (int a, int b) {
LL ans = 0;
int limit = min (a, b);
for (int l = 1, r; l <= limit; l = r + 1) {
r = min (a / (a / l), b / (b / l));
ans += (sum[r] - sum[l - 1]) * (a / l) * (b / l);
}
return ans;
}
int T;
int getnum () {
int num = 0;
char ch = getchar ();
while (! isdigit (ch))
ch = getchar ();
while (isdigit (ch))
num = (num << 3) + (num << 1) + ch - '0', ch = getchar ();
return num;
}
int main () {
prime_Acqu ();
T = getnum ();
for (int Case = 1; Case <= T; Case ++) {
int a = getnum (), b = getnum ();
LL ans = Calc (a, b);
printf ("%lld\n", ans);
}
return 0;
}
/*
2
10 10
100 100
*/
洛谷 2257 - YY的GCD的更多相关文章
- 解题:洛谷2257 YY的GCD
题面 初见莫比乌斯反演 有一个套路是关于GCD的反演经常设$f(d)=\sum_{gcd(i,j)==d},g(d)=\sum_{d|gcd(i,j)}$,然后推推推 $\sum\limits_{i= ...
- [洛谷2257]YY的GCD 题解
整理题目转化为数学语言 题目要我们求: \[\sum_{i=1}^n\sum_{i=1}^m[gcd(i,j)=p]\] 其中 \[p\in\text{质数集合}\] 这样表示显然不是很好,所以我们需 ...
- 洛谷 P2257 YY的GCD
洛谷 P2257 YY的GCD \(solution:\) 这道题完全跟[POI2007]ZAP-Queries (莫比乌斯反演+整除分块) 用的一个套路. 我们可以列出答案就是要我们求: \(ans ...
- 洛谷 P2257 YY的GCD 题解
原题链接 庆祝: 数论紫题 \(T4\) 达成! 莫比乌斯 \(T1\) 达成! yy 真是个 神犇 前记 之前我觉得: 推式子,直接欧拉筛,筛出个 \(\phi\),然后乱推 \(\gcd\) 就行 ...
- 洛谷P2257 YY的GCD 莫比乌斯反演
原题链接 差不多算自己推出来的第一道题QwQ 题目大意 \(T\)组询问,每次问你\(1\leqslant x\leqslant N\),\(1\leqslant y\leqslant M\)中有多少 ...
- 洛谷P2257 YY的GCD
今日份是数论 大概是..从小学奥数到渐渐毒瘤 那就简单列一下目录[大雾 同余 质数密度 唯一分解定理 互质 完全剩余系 简化剩余系 欧拉函数 逆元 斐蜀定理 阶(及其性质) 欧拉定理 费马小定理 原根 ...
- 洛谷P2257 YY的GCD(莫比乌斯反演)
传送门 原来……莫比乌斯反演是这么用的啊……(虽然仍然不是很明白) 首先,题目所求如下$$\sum_{i=1}^n\sum_{j=1}^m[gcd(i,j)=prim]$$ 我们设$f(d)$表示$g ...
- 洛谷 - P2257 - YY的GCD - 莫比乌斯反演 - 整除分块
https://www.luogu.org/problemnew/show/P2257 求 \(n,m\) 中 \(gcd(i,j)==p\) 的数对的个数 求 $\sum\limits_p \sum ...
- 洛谷 P2257 - YY的GCD(莫比乌斯反演+整除分块)
题面传送门 题意: 求满足 \(1 \leq x \leq n\),\(1 \leq y \leq m\),\(\gcd(x,y)\) 为质数的数对 \((x,y)\) 的个数. \(T\) 组询问. ...
随机推荐
- NSP4——Network Simulator for P4
NSP4--Network Simulator for P4 一.前言 NSP4旨在为P4开发者,创建一个可视化的P4流表管理及拓扑建立工具,帮助P4开发者,更好的调试自己的P4程序.此开发工具是基于 ...
- OpenFlow PacketOut消息机制
OpenFlow PacketOut消息机制 前言 由于最近实验的进行,遇到一个比较棘手的问题,就是利用控制器主动发送packet消息的问题,期间遇到一些问题,后来在RYU群中得到群友左木的帮助成功解 ...
- Alpha冲刺-第一天
1.1 今日完成任务情况以及遇到的问题. 完成任务情况 杜世康:弹幕的爬取 刘丹,李玉莹:系统统计功能实现 曹莹雯,尹楠: 主播管理功能实现 王静雅 :团队编码规范说明与本次博文撰写 遇到的问题 在爬 ...
- Jmeter使用笔记之函数
用Jmeter才做了一个项目的测试,就不得不对函数这部分吐槽一下,真是有点弱,难怪大多数人不用这个功能,不过如果用的好也是很方便的,以下慢慢说. 一.BeanShell函数 在测试中遇到了时间戳的加减 ...
- 正则js
匹配中文字符的正则表达式: [\u4e00-\u9fa5] 匹配双字节字符(包括汉字在内):[^\x00-\xff] 匹配空行的正则表达式:\n[\s| ]*\r 匹配HTML标记的正则表达式:/&l ...
- java配置环境变量与常用技巧
一.java入门 --->java平台 •Java SE Java Platform,Standard Edition-Java平台标准版. •Java EE Java Platform,Ent ...
- ES6学习笔记(三):与迭代相关的新东东
Symbol 概念 Symbol:一种新的原始数据类型,表示独一无二的值. 注意:Symbol函数的参数只是表示对当前Symbol值的描述,因此相同参数的Symbol函数的返回值是不相等的. // 没 ...
- cglib动态代理是通过继承父类的方式进行代理的 不是通过接口方式进行动态代理的 因此可以对普通的类进行代理
cglib动态代理是通过继承父类的方式进行代理的 不是通过接口方式进行动态代理的
- BZOJ2741 FOTILE模拟赛L(分块+可持久化trie)
显然做个前缀和之后变成询问区间内两个数异或最大值. 一种暴力做法是建好可持久化trie后直接枚举其中一个数查询,复杂度O(nmlogv). 观察到数据范围很微妙.考虑瞎分块. 设f[i][j]为第i个 ...
- 2017-12 CDQZ集训(已完结)
从联赛活了下来(虽然分数倒一……),接下来要去CDQZ集训啦…… DAY -2 2017-12-16 被老师安排负责一部分同学的住宿以及安排…… 抓紧时间继续学习,LCT真好玩啊真好玩…… 晚上放假了 ...