题意

给定长为 \(n\) 序列 \(a\) ,要求支持两种操作:

\(1.\) 询问在一个区间 \([l,r]\) 中,是否能够选出两个交集为空的集合 $ \rm X\ ,Y$, 使得 \(\sum_{i\in \rm X}{a_i}=\sum_{j\in \rm Y}{a_j}\)。

\(2.\) 将区间 \([l,r]\) 中的每个数字取立方并对 \(v\) 取模。

\(n\leq 10^5,v\leq 10^3\) .

分析

对于 \(1\) 操作 ,如果区间长度 \(len>13\) 一定有解,因为\(2^{14}>14 \times1000\) ,且此处的幂函数增长速度 \(>\) 一次函数.

此时区间中一定存在两个集合和相同,将交集部分去掉就可以构造出一组解。

否则考虑定义状态 \(f_{i,j}\) 表示前 \(i\) 个数字,和为 \(j\) 是否有方案。

\(f_{i,j}=f_{i-1,j}\ |\ f_{i-1,j-a[i]}\) ,如果某个时刻对于同一个 \(j\) 出现了两种构成方案,表示有解 ,理由同上。

这个过程可以用 \(bitset\) 优化。

对于操作 \(2\) ,用树状数组维护每个数取了几次立方,因为模数比较小,所以可以倍增查找。

时间复杂度 \(O(13n*(\log n+\frac{13\times13000}{32}))\).

出发点:鸽巢原理

代码

#include<bits/stdc++.h>
using namespace std;
#define go(u) for(int i=head[u],v=e[i].to;i;i=e[i].last,v=e[i].to)
#define rep(i,a,b) for(int i=a;i<=b;++i)
#define pb push_back
typedef long long LL;
inline int gi(){
int x=0,f=1;char ch=getchar();
while(!isdigit(ch)) {if(ch=='-') f=-1;ch=getchar();}
while(isdigit(ch)){x=(x<<3)+(x<<1)+ch-48;ch=getchar();}
return x*f;
}
template<typename T>inline bool Max(T &a,T b){return a<b?a=b,1:0;}
template<typename T>inline bool Min(T &a,T b){return b<a?a=b,1:0;}
const int N=1e5 + 7;
int n,m,mod;
int jp[N][18],tr[N],a[N];
bitset<14000>S;
int lowbit(int x){return x&-x;}
void modify(int x,int y){for(int i=x;i<=n;i+=lowbit(i)) tr[i]+=y;}
int query(int x){int res=0;for(int i=x;i;i-=lowbit(i)) res+=tr[i];return res;}
int main(){
n=gi(),m=gi(),mod=gi();
rep(i,1,n) a[i]=gi();
for(int i=0;i<mod;++i) jp[i][0]=i*i%mod*i%mod;//注意是操作次数的倍增数组 for(int j=1;j<18;++j)
for(int i=0;i<mod;++i)
jp[i][j]=jp[jp[i][j-1]][j-1]; int opt,l,r;
while(m--){
opt=gi(),l=gi(),r=gi();
if(opt==1){
if(r-l+1>=14) {puts("Yuno");continue;}
S.reset();S[0]=1;
rep(i,l,r){
int tmp=query(i),x=a[i];
for(int j=0;j<18;++j) if(tmp>>j&1) x=jp[x][j];
if((S&(S<<x+1)).any()) { puts("Yuno"); goto A;}
S=S|(S<<x+1);
}
puts("Yuki");
A:;
}else
modify(l,1),modify(r+1,-1);
}
return 0;
}

[BZOJ4722]由乃[鸽巢原理+bitset+倍增]的更多相关文章

  1. poj 2356 Find a multiple(鸽巢原理)

    Description The input contains N natural (i.e. positive integer) numbers ( N <= ). Each of that n ...

  2. 51nod 1574 排列转换(贪心+鸽巢原理)

    题意:有两个长度为n的排列p和s.要求通过交换使得p变成s.交换 pi 和 pj 的代价是|i-j|.要求使用最少的代价让p变成s. 考虑两个数字pi和pj,假如交换他们能使得pi到目标的距离减少,p ...

  3. POJ 3370. Halloween treats 抽屉原理 / 鸽巢原理

    Halloween treats Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 7644   Accepted: 2798 ...

  4. POJ 2356. Find a multiple 抽屉原理 / 鸽巢原理

    Find a multiple Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 7192   Accepted: 3138   ...

  5. cf319.B. Modulo Sum(dp && 鸽巢原理 && 同余模)

    B. Modulo Sum time limit per test 2 seconds memory limit per test 256 megabytes input standard input ...

  6. poj2356 Find a multiple(抽屉原理|鸽巢原理)

    /* 引用过来的 题意: 给出N个数,问其中是否存在M个数使其满足M个数的和是N的倍数,如果有多组解, 随意输出一组即可.若不存在,输出 0. 题解: 首先必须声明的一点是本题是一定是有解的.原理根据 ...

  7. NYOJ 417 死神来了 鸽巢原理

    死神来了 时间限制:1000 ms  |  内存限制:65535 KB 难度:3 描述 有一天,王小子在遨游世界时,遇到了一场自然灾害.一个人孤独的在一个岛上,没有吃的没有喝的.在他饥寒交迫将要死亡时 ...

  8. HDU 1005 Number Sequence【多解,暴力打表,鸽巢原理】

    Number Sequence Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)T ...

  9. Codeforces.618F.Double Knapsack(构造 鸽巢原理)

    题目链接 \(Description\) 给定两个大小为\(n\)的可重集合\(A,B\),集合中的元素都在\([1,n]\)内.你需要从这两个集合中各选一个非空子集,使它们的和相等.输出方案. \( ...

随机推荐

  1. 如何用 Python 实现 Web 抓取?

    [编者按]本文作者为 Blog Bowl 联合创始人 Shaumik Daityari,主要介绍 Web 抓取技术的基本实现原理和方法.文章系国内 ITOM 管理平台 OneAPM 编译呈现,以下为正 ...

  2. gradle中的compileSdkVersion和buildToolsVersion

    CompileSdkVersion:编译版本,就是运行这个项目需要的SDK,即API Level. buildToolsVerson:是构建工具的版本,构建工具包括了打包工具aapt.dx等等. 注意 ...

  3. winform调用jar包

    因为工作需要,需要做一个数据上传的程序,客户规定的是:数据接口采用http连接,采用JSON-RPC轻量级远程调用协议.所以决定用winform做一个管理界面(其中还包括其他的功能),java完成数据 ...

  4. ABP(ASP.NET Boilerplate Project)框架探讨

    从官网上下载下来带Module-Zero的abp框架. vs2015打开解决方案. 首先让系统run起来.把webconfig数据库连接改一下.启动程序. 发现报错:“本地语言指定”的错误,之后运行n ...

  5. Oracle EBS OM 创建订单

    DECLARE l_header_rec OE_ORDER_PUB.Header_Rec_Type; l_line_tbl OE_ORDER_PUB.Line_Tbl_Type; l_action_r ...

  6. C# 实现 JAVA AES加密解密[原创]

    以下是网上普遍能收到的JAVA AES加密解密方法. 因为里面用到了KeyGenerator 和 SecureRandom,但是.NET 里面没有这2个类.无法使用安全随机数生成KEY. 我们在接收J ...

  7. 获取本机正在使用的ipv4地址(访问互联网的IP)

    [转]原文地址:http://www.cnblogs.com/lijianda/p/6604651.html 1.一个电脑有多个网卡,有线的.无线的.还有vmare虚拟的两个网卡.2.就算只有一个网卡 ...

  8. cocos2d-x2.2.3学习

    cocos2d-x2.2.3抛弃了原先的vs模板,改为python创建项目,详细什么原因我不是非常清楚啊,可能更方便些吧. 毕竟用pythone能够一下子创建很多不同平台的项目,让项目移植更方便些.可 ...

  9. BZOJ2226:LCMSum(欧拉函数)

    Description Given n, calculate the sum LCM(1,n) + LCM(2,n) + .. + LCM(n,n), where LCM(i,n) denotes t ...

  10. jQuery 使用ajax,并刷新页面

    <script> function del_product_information(id) { $.ajax({ url: "{% url 'del_product_inform ...