隐马尔科夫模型研究 stock 以及 lotto
说明
本文参考了这里
由于数据是连续的,因此使用了高斯隐马尔科夫模型:gaussianHMM
一、stock代码
import tushare as ts
import pandas as pd
import numpy as np
from hmmlearn.hmm import GaussianHMM
from matplotlib import cm, pyplot as plt
import seaborn as sns
sns.set_style('white')
'''
假定隐藏状态数目为4,观测状态数目为2
'''
# 1.准备 X
df = ts.get_hist_data('sh',start='2014-01-01',end='2017-07-27')[::-1] # 上证指数
close = np.log(df['close'])
low, high = np.log(df['low']), np.log(df['high'])
t = 5
X = pd.concat([close.diff(1), close.diff(t), high-low], axis=1)[t:] # 显状态时间序列(观测得到)
# 2.拟合 HMM
model = GaussianHMM(n_components=6, covariance_type="diag", n_iter=1000).fit(X)
Z = model.predict(X) # 隐状态时间序列
# 3.画图看看
plt.figure(figsize=(12, 7))
for i in range(model.n_components):
mask = (Z==i) # 注意这里的Z!!!
plt.plot_date(df.index[t:][mask], df['close'][t:][mask],'.',label=f'{i}th hidden state',lw=1)
plt.legend()
plt.grid(1)
plt.show()
效果图

解释
下面是对6种隐状态的一种可能的解释:【图文对不上,文字来自这里】
- 状态0————蓝色————震荡下跌
- 状态1————绿色————小幅的上涨
- 状态2————红色————牛市上涨
- 状态3————紫色————牛市下跌
- 状态4————黄色————震荡下跌
- 状态5————浅蓝色————牛市下跌
以上的意义归结是存在一定主观性的。因为HMM模型对输入的多维度观测变量进行处理后,只负责分出几个类别,而并不会定义出每种类别的实际含义。所以我们从图形中做出上述的判断。
所以,这种方法本质上是一种 Classification(分类) 或者 Clustering(聚类)
二、lotto 代码
import tushare as ts
import pandas as pd
import numpy as np
from hmmlearn.hmm import GaussianHMM
from matplotlib import cm, pyplot as plt
from matplotlib.widgets import MultiCursor
import seaborn as sns
sns.set_style('white')
import marksix_1
import talib as ta
'''
假定隐藏状态数目为6,观测状态数目为4
'''
# 1.准备 X
lt = marksix_1.Marksix()
lt.load_data(period=1000)
#series = lt.adapter(loc='0000001', zb_name='ptsx', args=(1,), tf_n=0)
m = 2
series = lt.adapter(loc='0000001', zb_name='mod', args=(m, lt.get_mod_list(m)), tf_n=0)
# 实时线
close = np.cumsum(series).astype(float)
# 低阶数据
t1, t2, t3 = 5, 10, 20
ma1 = ta.MA(close, timeperiod=t1, matype=0)
std1 = ta.STDDEV(close, timeperiod=t1, nbdev=1)
ma2 = ta.MA(close, timeperiod=t2, matype=0)
std2 = ta.STDDEV(close, timeperiod=t2, nbdev=1)
ma3 = ta.MA(close, timeperiod=t3, matype=0)
std3 = ta.STDDEV(close, timeperiod=t3, nbdev=1)
# 转换一
'''
t = t3
X = pd.DataFrame({'ma1':ma1,'ma2':ma2,'ma3':ma3,'std1':std1,'std2':std2,'std3':std3}, index=lt.df.index)[t:]
'''
# 转换二
t = t2
X = pd.DataFrame({'ma1':ma1,'ma2':ma2,'std1':std1,'std2':std2}, index=lt.df.index)[t:]
#close = np.log(df['close'])
#low, high = np.log(df['low']), np.log(df['high'])
#t = 5
#X = pd.concat([close.diff(1), close.diff(t), high-low], axis=1)[t:] # 显状态时间序列(观测得到)
# 2.拟合 HMM
model = GaussianHMM(n_components=6, covariance_type="diag", n_iter=1000).fit(X)
Z = model.predict(X) # 隐状态时间序列
# 3.画图看看
fig, axes = plt.subplots(2, 1, sharex=True)
ax1, ax2 = axes[0], axes[1]
show_period = 300
# 布林线
upperband, middleband, lowerband = ta.BBANDS(close, timeperiod=5, nbdevup=2, nbdevdn=2, matype=0)
axes[0].plot_date(lt.df.index[-show_period:], close[-show_period:], 'rd-', markersize = 3)
axes[0].plot_date(lt.df.index[-show_period:], upperband[-show_period:], 'y-')
axes[0].plot_date(lt.df.index[-show_period:], middleband[-show_period:], 'b-')
axes[0].plot_date(lt.df.index[-show_period:], lowerband[-show_period:], 'y-')
for i in range(model.n_components):
mask = (Z[-show_period:]==i) # 注意这里的Z!!!
axes[1].plot_date(lt.df.index[-show_period:][mask], close[-show_period:][mask],'d',markersize=3,label=f'{i}th hidden state',lw=1)
axes[1].legend()
axes[1].grid(1)
multi = MultiCursor(fig.canvas, (axes[0], axes[1]), color='b', lw=2)
plt.show()
效果图

隐马尔科夫模型研究 stock 以及 lotto的更多相关文章
- HMM基本原理及其实现(隐马尔科夫模型)
HMM(隐马尔科夫模型)基本原理及其实现 HMM基本原理 Markov链:如果一个过程的“将来”仅依赖“现在”而不依赖“过去”,则此过程具有马尔可夫性,或称此过程为马尔可夫过程.马尔可夫链是时间和状态 ...
- 基于隐马尔科夫模型(HMM)的地图匹配(Map-Matching)算法
文章目录 1. 1. 摘要 2. 2. Map-Matching(MM)问题 3. 3. 隐马尔科夫模型(HMM) 3.1. 3.1. HMM简述 3.2. 3.2. 基于HMM的Map-Matchi ...
- 隐马尔科夫模型HMM学习最佳范例
谷歌路过这个专门介绍HMM及其相关算法的主页:http://rrurl.cn/vAgKhh 里面图文并茂动感十足,写得通俗易懂,可以说是介绍HMM很好的范例了.一个名为52nlp的博主(google ...
- 隐马尔科夫模型HMM(三)鲍姆-韦尔奇算法求解HMM参数
隐马尔科夫模型HMM(一)HMM模型 隐马尔科夫模型HMM(二)前向后向算法评估观察序列概率 隐马尔科夫模型HMM(三)鲍姆-韦尔奇算法求解HMM参数(TODO) 隐马尔科夫模型HMM(四)维特比算法 ...
- 隐马尔科夫模型(Hidden Markov Models)
链接汇总 http://www.csie.ntnu.edu.tw/~u91029/HiddenMarkovModel.html 演算法笔记 http://read.pudn.com/downloads ...
- 隐马尔科夫模型HMM
崔晓源 翻译 我们通常都习惯寻找一个事物在一段时间里的变化规律.在很多领域我们都希望找到这个规律,比如计算机中的指令顺序,句子中的词顺序和语音中的词顺序等等.一个最适用的例子就是天气的预测. 首先,本 ...
- 隐马尔科夫模型(HMM)
基本概念 1Markov Models 2Hidden Markov Models 3概率计算算法前向后向算法 1-3-1直接计算 1-3-2前向算法 1-3-3后向算法 4学习问题Baum-Welc ...
- 机器学习中的隐马尔科夫模型(HMM)详解
机器学习中的隐马尔科夫模型(HMM)详解 在之前介绍贝叶斯网络的博文中,我们已经讨论过概率图模型(PGM)的概念了.Russell等在文献[1]中指出:"在统计学中,图模型这个术语指包含贝叶 ...
- 隐马尔科夫模型 HMM(Hidden Markov Model)
本科阶段学了三四遍的HMM,机器学习课,自然语言处理课,中文信息处理课:如今学研究生的自然语言处理,又碰见了这个老熟人: 虽多次碰到,但总觉得一知半解,对其了解不够全面,借着这次的机会,我想要直接搞定 ...
随机推荐
- 创建一个OpenGL窗口
在上节课Windows10+VS2017 用GLFW+GLAD 搭建OpenGL开发环境 中,我们搭建好了OpenGL开发环境.这节课编写代码去测试开发环境. 还是用上节课创建的OpenGL项目,右击 ...
- CSS 小结笔记之解决flex布局边框对不齐
在使用flex 进行伸缩布局的时候,经常会给子盒子设置边框,这时经常会出现上下边框对不齐的情况.本篇文章来探讨并解决这个问题. 具体出现的问题如下图所示 具体代码如下 <!DOCTYPE htm ...
- React 组件 API
React 组件 API 在本章节中我们将讨论 React 组件 API.我们将讲解以下7个方法: 设置状态:setState 替换状态:replaceState 设置属性:setProps 替换属性 ...
- 转:HttpModule与HttpHandler详解
ASP.NET对请求处理的过程:当请求一个*.aspx文件的时候,这个请求会被inetinfo.exe进程截获,它判断文件的后缀(aspx)之后,将这个请求转交给 ASPNET_ISAPI.dll,A ...
- DLL动态链接库导出函数方法 -- 动态导出(.def文件导出)
简介 动态链接库最大的优势在于可以提供给其他应用程序共享的资源,最小化应用程序代码的复杂度,其中一个十分重要的功能就是dll可以导出封装函数的功能.导出函数有两种主要方式,分别是静态导入和动态导入,本 ...
- Hadoop HBase概念学习系列之HBase里的HRegion(五)
首先,要区分,HRegion服务器包含两大部分:HLog部分和HRegion部分 HBase里的HRegion服务器 HBase里的HRegion 当表的大小超过设置值的时候,HBase会自动将表划 ...
- 记一次隐秘的XSS漏洞挖掘
前言 在为某客户网站做渗透测试时发现一个有趣的事情.当我访问该网站的某条链接时服务器返回的是404页面.看到这里我当时就下意识的忽略它,但是后来又想了想这也不是完全没有价值,毕竟中间件及其版本都出来了 ...
- php框架安装
安装yii框架 跳转到composer.phar目录 cd C:\ProgramData\ComposerSetup\bin 安装yii2高级版 php composer.phar create-pr ...
- spark的shuffle和原理分析
概述 Shuffle就是对数据进行重组,由于分布式计算的特性和要求,在实现细节上更加繁琐和复杂. 在MapReduce框架,Shuffle是连接Map和Reduce之间的桥梁,Map阶段 ...
- JAVA-最常用的A题语法
输出 System.out.println(""); if 语句 if(布尔表达式) { //如果布尔表达式为true将执行的语句 } if...else... 语句 if(布尔表 ...