Tour

Time Limit: 3000/1000 MS (Java/Others)    Memory Limit: 65535/65535 K (Java/Others)
Total Submission(s): 3378    Accepted Submission(s): 1627

Problem Description
In the kingdom of Henryy, there are N (2 <= N <= 200) cities, with M (M <= 30000) one-way roads connecting them. You are lucky enough to have a chance to have a tour in the kingdom. The route should be designed as: The route should contain one or more loops.
(A loop is a route like: A->B->……->P->A.)
Every city should be just in one route.
A loop should have at least two cities. In one route, each city should be visited just once. (The only exception is that the first and the last city should be the same and this city is visited twice.)
The total distance the N roads you have chosen should be minimized.
 
Input
An integer T in the first line indicates the number of the test cases.
In each test case, the first line contains two integers N and M, indicating the number of the cities and the one-way roads. Then M lines followed, each line has three integers U, V and W (0 < W <= 10000), indicating that there is a road from U to V, with the
distance of W.
It is guaranteed that at least one valid arrangement of the tour is existed.
A blank line is followed after each test case.
 
Output
For each test case, output a line with exactly one integer, which is the minimum total distance.
 
Sample Input
1
6 9
1 2 5
2 3 5
3 1 10
3 4 12
4 1 8
4 6 11
5 4 7
5 6 9
6 5 4
 
Sample Output
42
 
Source
 

————————————————————————————————

题目的意思是是给出一张有向图,要选择几条边使得每个点都落在一个环上,使得所选的边和最小

思路:每个点落在环上,所以每个点的入度出度均为1,这正好符合二分图性质,建立二分图,求最大权匹配,题目要求最小,权值取负数即可

#include <iostream>
#include <cstdio>
#include <string>
#include <cstring>
#include <cmath>
#include <algorithm>
#include <queue>
#include <vector>
#include <set>
#include <stack>
#include <map>
#include <climits>
using namespace std; #define LL long long const int MAXN = 505;
const int INF = 0x3f3f3f3f;
int g[MAXN][MAXN];
int lx[MAXN],ly[MAXN]; //顶标
int linky[MAXN];
int visx[MAXN],visy[MAXN];
int slack[MAXN];
int nx,ny;
bool find(int x)
{
visx[x] = true;
for(int y = 0; y < ny; y++)
{
if(visy[y])
continue;
int t = lx[x] + ly[y] - g[x][y];
if(t==0)
{
visy[y] = true;
if(linky[y]==-1 || find(linky[y]))
{
linky[y] = x;
return true; //找到增广轨
}
}
else if(slack[y] > t)
slack[y] = t;
}
return false; //没有找到增广轨(说明顶点x没有对应的匹配,与完备匹配(相等子图的完备匹配)不符)
} int KM() //返回最优匹配的值
{
int i,j;
memset(linky,-1,sizeof(linky));
memset(ly,0,sizeof(ly));
for(i = 0; i < nx; i++)
for(j = 0,lx[i] = -INF; j < ny; j++)
lx[i] = max(lx[i],g[i][j]);
for(int x = 0; x < nx; x++)
{
for(i = 0; i < ny; i++)
slack[i] = INF;
while(true)
{
memset(visx,0,sizeof(visx));
memset(visy,0,sizeof(visy));
if(find(x)) //找到增广轨,退出
break;
int d = INF;
for(i = 0; i < ny; i++) //没找到,对l做调整(这会增加相等子图的边),重新找
{
if(!visy[i] && d > slack[i])
d = slack[i];
}
for(i = 0; i < nx; i++)
{
if(visx[i])
lx[i] -= d;
}
for(i = 0; i < ny; i++)
{
if(visy[i])
ly[i] += d;
else
slack[i] -= d;
}
}
}
int result = 0;
for(i = 0; i < ny; i++)
if(linky[i]>-1)
result += g[linky[i]][i];
return -result;
} int main()
{
int n,m,u,v,c,T;
scanf("%d",&T);
while(T--)
{
scanf("%d%d",&n,&m);
nx=ny=n;
memset(g,-INF,sizeof g);
for(int i=0; i<m; i++)
{
scanf("%d%d%d",&u,&v,&c);
u--,v--;
g[u][v]=max(g[u][v],-c);
}
printf("%d\n",KM());
}
return 0;
}

  

HDU3488 Tour的更多相关文章

  1. HDU3488 Tour —— 二分图最大权匹配 KM算法

    题目链接:https://vjudge.net/problem/HDU-3488 Tour Time Limit: 3000/1000 MS (Java/Others)    Memory Limit ...

  2. HDU3488 Tour [有向环覆盖 费用流]

    Tour Time Limit: 3000/1000 MS (Java/Others)    Memory Limit: 65535/65535 K (Java/Others)Total Submis ...

  3. HDU3488 Tour KM

    原文链接http://www.cnblogs.com/zhouzhendong/p/8284304.html 题目传送门 - HDU3488 题意概括 给一个n的点m条边的有向图. 然后让你把这个图分 ...

  4. hdu3488 Tour 拆点+二分图最佳匹配

    In the kingdom of Henryy, there are N (2 <= N <= 200) cities, with M (M <= 30000) one-way r ...

  5. HDU3488:Tour(KM算法)

    Tour Time Limit: 3000/1000 MS (Java/Others)    Memory Limit: 65535/65535 K (Java/Others)Total Submis ...

  6. POJ 1637 Sightseeing tour

    Sightseeing tour Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 9276   Accepted: 3924 ...

  7. Euler Tour Tree与dynamic connectivity

    Euler Tour Tree最大的优点就是可以方便的维护子树信息,这点LCT是做不到的.为什么要维护子树信息呢..?我们可以用来做fully dynamic connectivity(online) ...

  8. POJ2677 Tour[DP 状态规定]

    Tour Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 4307   Accepted: 1894 Description ...

  9. soj 1015 Jill's Tour Paths 解题报告

    题目描述: 1015. Jill's Tour Paths Constraints Time Limit: 1 secs, Memory Limit: 32 MB Description Every ...

随机推荐

  1. PAT 1017 A除以B(20)(代码)

    1017 A除以B(20 分) 本题要求计算 A/B,其中 A 是不超过 1000 位的正整数,B 是 1 位正整数.你需要输出商数 Q 和余数 R,使得 A=B×Q+R 成立. 输入格式: 输入在一 ...

  2. iOS.Thread.OSAtomic

    1. 原子操作 (Atomic Operations) 编写多线程代码最重要的一点是:对共享数据的访问要加锁. Shared data is any data which more than one ...

  3. python-bs4的使用

    BeautifulSoup4 官方文档 是一个Python库,用于从HTML和XML文件中提取数据.它与您最喜欢的解析器一起使用,提供导航,搜索和修改解析树的惯用方法.它通常可以节省程序员数小时或数天 ...

  4. Python编程笔记(第一篇)Python基础语法

    一.python介绍 1.编程语言排行榜 TIOBE榜 TIOBE编程语言排行榜是编程语言流行趋势的一个指标,每月更新,这份排行榜排名基于互联网有经验的程序员.课程和第三方厂商的数量. 2.pytho ...

  5. mongoDB(Linux)

    启动  service mongod start 安装好后,输入mongo进入控制台 创建数据库 use baseName db.createCollection("game_record& ...

  6. OpenSSH配置与基本使用

    SSH访问远程 SSH常见分类: telnet-远程登录协议,23/TCP 明文认证.明文传输(不安全) ssh(Secure SHell)-应用层协议,22/TCP 通讯和认证过程加密.主机认证 用 ...

  7. 嵌入式C编程代码优化笔记

    [优化永远是追求某种平衡而不是走极端,优化是有侧重点的,优化是一门平衡的艺术,它往往要以牺牲程序的可读性或者增加代码长度为代价] 1.选择合适的算法和数据结构 选择一种合适的数据结构很重要,如果在一堆 ...

  8. spring学习 十三 注解AOP

    spring 不会自动去寻找注解,必须告诉 spring 哪些包下的类中可能有注解,也就是要开启注解扫描,注解的包是spring-context.jar,所以在配置文件中还要引入context约束,也 ...

  9. spring 学习 二 IOC/DI

    中文名称:控制反转 英文名称:( Inversion of Control ) 1 控制反转作用: 一般在编写java程序时,需要程序员自己创建对象的实例,例如 A a=new A();语句,就是程序 ...

  10. 控制台管理apk

    http://www.cnblogs.com/mythou/archive/2013/06/11/3132249.html pm命令的具体用法如下: pm 命令是Android里面packageMan ...