Farmer John's N (1 <= N <= 50,000) cows (numbered 1..N) are planning to run away and join the circus. Their hoofed feet prevent them from tightrope walking and swinging from the trapeze (and their last attempt at firing a cow out of a cannon met with a dismal failure). Thus, they have decided to practice performing acrobatic stunts.

The cows aren't terribly creative and have only come up with one acrobatic stunt: standing on top of each other to form a vertical stack of some height. The cows are trying to figure out the order in which they should arrange themselves ithin this stack.

Each of the N cows has an associated weight (1 <= W_i <= 10,000) and strength (1 <= S_i <= 1,000,000,000). The risk of a cow collapsing is equal to the combined weight of all cows on top of her (not including her own weight, of course) minus her strength (so that a stronger cow has a lower risk). Your task is to determine an ordering of the cows that minimizes the greatest risk of collapse for any of the cows.

Input

* Line 1: A single line with the integer N.

* Lines 2..N+1: Line i+1 describes cow i with two space-separated integers, W_i and S_i.

Output

* Line 1: A single integer, giving the largest risk of all the cows in any optimal ordering that minimizes the risk.

Sample Input

3
10 3
2 5
3 3

Sample Output

2

Hint

OUTPUT DETAILS:

Put the cow with weight 10 on the bottom. She will carry the other two cows, so the risk of her collapsing is 2+3-3=2. The other cows have lower risk of collapsing.

 
 
按牛的体重和力量之和进行排序。

因此,如果A在上,B在下,则有:
A: Ra = S + Wb - Xa;
B: Rb = S - Xb;
反之如下:
A: Ra = S - Xa;
B: Rb = S + Wa - Xb;

如果我们定义一方案好于而方案则有:
S + Wb - Xa < S + Wa - Xb;
则: Wa + Xa < Wb + Xb;

 
 
#include<iostream>
#include<algorithm>
using namespace std;
struct Cow{
int weight;
int strength;
bool operator<(const Cow& other)const{
return other.weight+other.strength<weight+strength;
}
}cows[];
int main(){
int n;
cin>>n;
int total=;
for(int i=;i<n;i++){
cin>>cows[i].weight>>cows[i].strength;
total+=cows[i].weight;
}
sort(cows,cows+n);
int m=-INT_MAX;
for(int i=;i<n;i++){
total-=cows[i].weight;
m=max(m,total-cows[i].strength);
}
cout<<m<<endl;
return ;
}

POJ3045--Cow Acrobats(theory proving)的更多相关文章

  1. poj3045 Cow Acrobats (思维,贪心)

    题目: poj3045 Cow Acrobats 解析: 贪心题,类似于国王游戏 考虑两个相邻的牛\(i\),\(j\) 设他们上面的牛的重量一共为\(sum\) 把\(i\)放在上面,危险值分别为\ ...

  2. POJ3045 Cow Acrobats 2017-05-11 18:06 31人阅读 评论(0) 收藏

    Cow Acrobats Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 4998   Accepted: 1892 Desc ...

  3. POJ3045 Cow Acrobats —— 思维证明

    题目链接:http://poj.org/problem?id=3045 Cow Acrobats Time Limit: 1000MS   Memory Limit: 65536K Total Sub ...

  4. POJ-3045 Cow Acrobats (C++ 贪心)

    Description Farmer John's N (1 <= N <= 50,000) cows (numbered 1..N) are planning to run away a ...

  5. poj3045 Cow Acrobats(二分最大化最小值)

    https://vjudge.net/problem/POJ-3045 读题后提取到一点:例如对最底层的牛来说,它的崩溃风险=所有牛的重量-(底层牛的w+s),则w+s越大,越在底层. 注意范围lb= ...

  6. POJ3045 Cow Acrobats

    题意 Farmer John's N (1 <= N <= 50,000) cows (numbered 1..N) are planning to run away and join t ...

  7. [USACO2005][POJ3045]Cow Acrobats(贪心)

    题目:http://poj.org/problem?id=3045 题意:每个牛都有一个wi和si,试将他们排序,每头牛的风险值等于前面所有牛的wj(j<i)之和-si,求风险值最大的牛的最小风 ...

  8. 【POJ - 3045】Cow Acrobats (贪心)

    Cow Acrobats Descriptions 农夫的N只牛(1<=n<=50,000)决定练习特技表演. 特技表演如下:站在对方的头顶上,形成一个垂直的高度. 每头牛都有重量(1 & ...

  9. BZOJ1629: [Usaco2007 Demo]Cow Acrobats

    1629: [Usaco2007 Demo]Cow Acrobats Time Limit: 5 Sec  Memory Limit: 64 MBSubmit: 601  Solved: 305[Su ...

随机推荐

  1. 冒泡排序(js版)

    基本思想:两两比较相邻记录的关键字,如果反序则交换,直至没有反序为止. 最初的冒泡排序(初级版): //从小到大 function BubbleSort(arr){ var i,j,temp; for ...

  2. iOS.PrototypeTools

    1. iPhone/iPad 原型工具 http://giveabrief.com/ 2. proto.io https://proto.io/ 3. Origami http://facebook. ...

  3. BZOJ 3131 [SDOI2013]淘金 - 数位DP

    传送门 Solution 这道数位$DP$看的我很懵逼啊... 首先我们肯定要先预处理出 $12$位乘起来的所有的可能情况, 记录入数组 $b$, 发现个数并不多, 仅$1e4$不到. 然后我们考虑算 ...

  4. pthon 反转嵌套的list

    def rev_recursive(li): try: iterator = iter(li) except TypeError: return li l = [] for item in itera ...

  5. python imaplib无痕取信的主要

    typ, data = M.fetch(num, (UID BODY.PEEK[]))  

  6. NC 6系预警类型注册

    在实际开发预警任务中,因为模块是新创建的,所以开发预警,就要在相应的节点模块注册.但这样代码就得放在相应的模块中,注册个预警类型,就可以把代码直接放在自己新建的模块. .先执行新建模块语句 inser ...

  7. SQL截取字符串分隔符中间部门的办法

    需求:实际项目中需要截取第2到第3个逗号中间部分的内容 方案: declare @str nvarchar(50);set @str='11,222,3333,44444';select @str a ...

  8. C#调用开源图像识别类库tessnet2

    首先下载tessnet2_32.dll及相关语言包,将dll加入引用 private tessnet2.Tesseract ocr = new tessnet2.Tesseract();//声明一个O ...

  9. 嵌入式操作系统VxWorks中网络协议存储池原理及实现

    嵌入式操作系统VxWorks中网络协议存储池原理及实现 周卫东 蔺妍 刘利强 (哈尔滨工程大学自动化学院,黑龙江 哈尔滨,150001) 摘  要  本文讨论了网络协议存储池的基本原理和在嵌入式操作系 ...

  10. python之常用模块篇5

    一.日志模块,logging模块 1)logging模块简单使用,屏幕输出.默认级别30 import logging logging.debug( logging.info( logging.war ...