Farmer John's N (1 <= N <= 50,000) cows (numbered 1..N) are planning to run away and join the circus. Their hoofed feet prevent them from tightrope walking and swinging from the trapeze (and their last attempt at firing a cow out of a cannon met with a dismal failure). Thus, they have decided to practice performing acrobatic stunts.

The cows aren't terribly creative and have only come up with one acrobatic stunt: standing on top of each other to form a vertical stack of some height. The cows are trying to figure out the order in which they should arrange themselves ithin this stack.

Each of the N cows has an associated weight (1 <= W_i <= 10,000) and strength (1 <= S_i <= 1,000,000,000). The risk of a cow collapsing is equal to the combined weight of all cows on top of her (not including her own weight, of course) minus her strength (so that a stronger cow has a lower risk). Your task is to determine an ordering of the cows that minimizes the greatest risk of collapse for any of the cows.

Input

* Line 1: A single line with the integer N.

* Lines 2..N+1: Line i+1 describes cow i with two space-separated integers, W_i and S_i.

Output

* Line 1: A single integer, giving the largest risk of all the cows in any optimal ordering that minimizes the risk.

Sample Input

3
10 3
2 5
3 3

Sample Output

2

Hint

OUTPUT DETAILS:

Put the cow with weight 10 on the bottom. She will carry the other two cows, so the risk of her collapsing is 2+3-3=2. The other cows have lower risk of collapsing.

 
 
按牛的体重和力量之和进行排序。

因此,如果A在上,B在下,则有:
A: Ra = S + Wb - Xa;
B: Rb = S - Xb;
反之如下:
A: Ra = S - Xa;
B: Rb = S + Wa - Xb;

如果我们定义一方案好于而方案则有:
S + Wb - Xa < S + Wa - Xb;
则: Wa + Xa < Wb + Xb;

 
 
#include<iostream>
#include<algorithm>
using namespace std;
struct Cow{
int weight;
int strength;
bool operator<(const Cow& other)const{
return other.weight+other.strength<weight+strength;
}
}cows[];
int main(){
int n;
cin>>n;
int total=;
for(int i=;i<n;i++){
cin>>cows[i].weight>>cows[i].strength;
total+=cows[i].weight;
}
sort(cows,cows+n);
int m=-INT_MAX;
for(int i=;i<n;i++){
total-=cows[i].weight;
m=max(m,total-cows[i].strength);
}
cout<<m<<endl;
return ;
}

POJ3045--Cow Acrobats(theory proving)的更多相关文章

  1. poj3045 Cow Acrobats (思维,贪心)

    题目: poj3045 Cow Acrobats 解析: 贪心题,类似于国王游戏 考虑两个相邻的牛\(i\),\(j\) 设他们上面的牛的重量一共为\(sum\) 把\(i\)放在上面,危险值分别为\ ...

  2. POJ3045 Cow Acrobats 2017-05-11 18:06 31人阅读 评论(0) 收藏

    Cow Acrobats Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 4998   Accepted: 1892 Desc ...

  3. POJ3045 Cow Acrobats —— 思维证明

    题目链接:http://poj.org/problem?id=3045 Cow Acrobats Time Limit: 1000MS   Memory Limit: 65536K Total Sub ...

  4. POJ-3045 Cow Acrobats (C++ 贪心)

    Description Farmer John's N (1 <= N <= 50,000) cows (numbered 1..N) are planning to run away a ...

  5. poj3045 Cow Acrobats(二分最大化最小值)

    https://vjudge.net/problem/POJ-3045 读题后提取到一点:例如对最底层的牛来说,它的崩溃风险=所有牛的重量-(底层牛的w+s),则w+s越大,越在底层. 注意范围lb= ...

  6. POJ3045 Cow Acrobats

    题意 Farmer John's N (1 <= N <= 50,000) cows (numbered 1..N) are planning to run away and join t ...

  7. [USACO2005][POJ3045]Cow Acrobats(贪心)

    题目:http://poj.org/problem?id=3045 题意:每个牛都有一个wi和si,试将他们排序,每头牛的风险值等于前面所有牛的wj(j<i)之和-si,求风险值最大的牛的最小风 ...

  8. 【POJ - 3045】Cow Acrobats (贪心)

    Cow Acrobats Descriptions 农夫的N只牛(1<=n<=50,000)决定练习特技表演. 特技表演如下:站在对方的头顶上,形成一个垂直的高度. 每头牛都有重量(1 & ...

  9. BZOJ1629: [Usaco2007 Demo]Cow Acrobats

    1629: [Usaco2007 Demo]Cow Acrobats Time Limit: 5 Sec  Memory Limit: 64 MBSubmit: 601  Solved: 305[Su ...

随机推荐

  1. pyton random 模块

    import random print(random.random())#(0,1)----float 大于0且小于1之间的小数 print(random.randint(1,3)) #[1,3] 大 ...

  2. 如何提高php应用的性能?

    1. 如果能将类的方法定义成static,就尽量定义成static,它的速度会提升将近4倍.2.$row[’id’] 的速度是$row[id]的7倍.3.echo 比 print快,并且使用echo的 ...

  3. C# 一个数组未赋值引发的错误

    在电脑前又是一天,后来脑子也糊里糊涂,可能是基础还不牢固,设置断点,找了找问题才发现数组定义出了问题, 我是这样定义数组的,string[] auths ; string auths=new stri ...

  4. 27.MySQL备份与恢复

    27.备份与恢复27.1 备份/恢复策略考虑因素:备份表的存储引擎(事务性or非事务性):全备份or增量备份用复制做异地备份定期备份,考虑恢复时间确保mysql打开log-bin,有了BINLOG,M ...

  5. C# 获取 存储过程 返回值

    C#获取存储过程的返回值,这一方法,总是容易忘,今天给贴出来,以方便下次使用 存储过程: CREATE  PROCEDURE [dbo].[Proc_GetInfo]     ),     ) out ...

  6. BZOJ1233 干草堆 - 单调队列优化DP

    问题描述: 若有干个干草, 分别有各自的宽度, 要求将它们按顺序摆放, 并且每层的宽度不大于 它的下面一层 ,  求最多叠几层 题解: zkw神牛证明了: 底边最短, 层数最高         证明: ...

  7. Python之路(第三篇):Python基本数据类型字符串(二)

    一.基本数据类型1.字符串 str字符串方法介绍(二)a --expandtabs( ) expandtabs( ) 把字符串中的 tab 符号('\t')转为空格参数默认为8,注意字符串原有的空格也 ...

  8. [ ZooKeeper]ZooKeeper 的功能和原理

    Zookeeper功能简介: ZooKeeper 是一个开源的分布式协调服务,由雅虎创建,是 Google Chubby 的开源实现.分布式应用程序可以基于 ZooKeeper 实现诸如数据发布/订阅 ...

  9. .net使用NPOI的XSSFWorkbook进行web开发中导出Excel

    之前也使用过NPOI导出excel,这次是因为在导出的excel里新增了几个列,正好超出了255的限制,所以又要改了. 今天主要出了4个问题: 1. Invalid column index (256 ...

  10. apache反向代理设置

    为了方便在内网测试微信接口API <VirtualHost *:80> ServerName wx.abc.com ProxyPreserveHost on ProxyPass / htt ...