大数据入门第二十三天——SparkSQL(一)入门与使用
一、概述
1.什么是sparkSQL
根据官网的解释:
Spark SQL is a Spark module for structured data processing.
也就是说,sparkSQL是一个处理结构化数据的组件
更多的介绍,可以参见官网或者w3c:https://www.w3cschool.cn/spark_sql/spark_sql_introduction.html
中文简明介绍:
Spark SQL是Spark用来处理结构化数据的一个模块,它提供了一个编程抽象叫做DataFrame并且作为分布式SQL查询引擎的作用。(当然,现在还有DataSet)
2.与hive的关联
我们已经学习了Hive,它是将Hive SQL转换成MapReduce然后提交到集群上执行,大大简化了编写MapReduce的程序的复杂性,由于MapReduce这种计算模型执行效率比较慢。MapReduce计算过程中大量的中间磁盘落地过程消耗了大量的I/O,降低的运行效率。所以Spark SQL的应运而生,它是将Spark SQL转换成RDD,然后提交到集群执行,执行效率非常快!
3.spark SQL的特点
由官网介绍,可以知道,有以下特性:
1.易整合
2.统一的数据访问方式
3.兼容Hive
4.标准的数据连接
二、DataFrames
1.什么是DataFrames
与RDD类似,DataFrame也是一个分布式数据容器。然而DataFrame更像传统数据库的二维表格,除了数据以外,还记录数据的结构信息,即schema。
同时,与Hive类似,DataFrame也支持嵌套数据类型(struct、array和map)。从API易用性的角度上 看,DataFrame API提供的是一套高层的关系操作,比函数式的RDD API要更加友好,门槛更低。由于与R和Pandas的DataFrame类似,Spark DataFrame很好地继承了传统单机数据分析的开发体验。
2.1版本中的Dataset的区别与对比,参考:https://www.cnblogs.com/starwater/p/6841807.html
2.创建DataFrames
启动Hadoop(这里只使用start-dfs.sh启动hdfs,yarn暂时不起)
启动spark(在sbin/start-all.sh)
启动spark-shell:
[hadoop@mini1 ~]$ /home/hadoop/apps/spark-1.6.-bin-hadoop2./bin/spark-shell \
> --master spark://mini1:7077 \
> --executor-memory 1g \
> --total-executor-cores
创建步骤:
1.在本地创建一个文件,有三列,分别是id、name、age,用空格分隔,然后上传到hdfs上
hdfs dfs -put person.txt /
2.在spark shell执行下面命令,读取数据,将每一行的数据使用列分隔符分割
val lineRDD = sc.textFile("hdfs://mini1:9000/person.txt").map(_.split(","))
3.定义case class(相当于表的schema)
case class Person(id:Int, name:String, age:Int)
4.将RDD和case class关联
val personRDD = lineRDD.map(x => Person(x(0).toInt, x(1), x(2).toInt))
5.将RDD转换成DataFrame
val personDF = personRDD.toDF
6.接下来就可以对DF进行处理了,例如:

// select("id","name").show()等选择特定列(DSL风格)
3.DataFrame常用操作
DSL风格
查看内容:personDF.show

查看指定列:personDF.select("id","name").show

查看schema信息:personDF.printSchema

列操作(age+1):personDF.select(col("id"), col("name"), col("age") + 1).show

过滤操作(age>=19):personDF.filter(col("age") >= 19).show

分组并统计:personDF.groupBy("age").count().show()
SQL风格
如果想使用SQL风格的语法,需要将DataFrame注册成表
personDF.registerTempTable("t_person")
然后,就可以使用 sqlContext.sql 来使用SQL风格的语法了!
查询年龄最大的前两名:SELECT * FROM t_person ORDER BY age DESC LIMIT 2

显示表的Schema信息:DESC t_person

三、以编程形式执行spark SQL
1.引入依赖
<dependency>
<groupId>org.apache.spark</groupId>
<artifactId>spark-sql_2.10</artifactId>
<version>1.5.2</version>
</dependency>
// 项目依然使用之前的helloSpark
2.编写代码——通过反射推断Schema
package com.sql
import org.apache.spark.{SparkConf, SparkContext}
import org.apache.spark.sql.SQLContext
object SQLDemo {
def main(args: Array[String]): Unit = {
// 提交集群
// val conf = new SparkConf().setAppName("SQLDemo")
// 本地运行
val conf = new SparkConf().setAppName("SQLDemo").setMaster("local")
val sc = new SparkContext(conf)
// 创建sql的交互接口
val sqlContext = new SQLContext(sc)
// 可以设置用户(与Hadoop类似)
System.setProperty("user.name","hadoop")
val personRDD = sc.textFile("hdfs://mini1:9000/person.txt").map(line => {
val fields = line.split(",")
// case class不用new,直接返回了一个Person
Person(fields(0).toInt, fields(1), fields(2).toInt)
})
// 导入隐式转换,将rdd转换为DF(原RDD没有那个方法)
import sqlContext.implicits._
val personDF = personRDD.toDF
// 可以使用DSL风格:personDF.show
// 推荐使用熟悉的SQL风格,先转换再使用
personDF.registerTempTable("t_person")
val sql1 = "SELECT * FROM t_person ORDER BY age DESC LIMIT 2"
sqlContext.sql(sql1).show()
sc.stop()
}
}
case class Person(id:Int, name:String, age:Int)
提交集群:如果需要参数的话需要在后面再追加相关参数即可
[hadoop@mini1 ~]$ /home/hadoop/apps/spark-1.6.3-bin-hadoop2.6/bin/spark-submit \
> --class com.sql.SQLDemo \
> --master spark://mini1:7077 \
> /home/hadoop/HelloSpark-2.0.jar
3.编写代码——通过StructType直接指定Schema
package cn.itcast.spark.sql
import org.apache.spark.sql.{Row, SQLContext}
import org.apache.spark.sql.types._
import org.apache.spark.{SparkContext, SparkConf}
/**
* Created by ZX on 2015/12/11.
*/
object SpecifyingSchema {
def main(args: Array[String]) {
//创建SparkConf()并设置App名称
val conf = new SparkConf().setAppName("SQL-2")
//SQLContext要依赖SparkContext
val sc = new SparkContext(conf)
//创建SQLContext
val sqlContext = new SQLContext(sc)
//从指定的地址创建RDD(这里的RDD还是切割的Array,而不是Person了)
val personRDD = sc.textFile(args(0)).map(_.split(" "))
//通过StructType直接指定每个字段的schema
val schema = StructType(
List(
StructField("id", IntegerType, true),
StructField("name", StringType, true),
StructField("age", IntegerType, true)
)
)
//将RDD映射到rowRDD
val rowRDD = personRDD.map(p => Row(p(0).toInt, p(1).trim, p(2).toInt))
//将schema信息应用到rowRDD上
val personDataFrame = sqlContext.createDataFrame(rowRDD, schema)
//注册表
personDataFrame.registerTempTable("t_person")
//执行SQL
val df = sqlContext.sql("select * from t_person order by age desc limit 4")
//将结果以JSON的方式存储到指定位置
df.write.json(args(1))
//停止Spark Context
sc.stop()
}
}
结果处理:
6.对personDF进行处理 #(SQL风格语法)
personDF.registerTempTable("t_person")
sqlContext.sql("select * from t_person order by age desc limit 2").show
sqlContext.sql("desc t_person").show
val result = sqlContext.sql("select * from t_person order by age desc") 7.保存结果(sava已经是deprecated)
result.save("hdfs://hadoop.itcast.cn:9000/sql/res1")
result.save("hdfs://hadoop.itcast.cn:9000/sql/res2", "json") #以JSON文件格式覆写HDFS上的JSON文件
import org.apache.spark.sql.SaveMode._
result.save("hdfs://hadoop.itcast.cn:9000/sql/res2", "json" , Overwrite) 8.重新加载以前的处理结果(可选)
sqlContext.load("hdfs://hadoop.itcast.cn:9000/sql/res1")
sqlContext.load("hdfs://hadoop.itcast.cn:9000/sql/res2", "json")
大数据入门第二十三天——SparkSQL(一)入门与使用的更多相关文章
- 大数据入门第二十三天——SparkSQL(二)结合hive
一.SparkSQL结合hive 1.首先通过官网查看与hive匹配的版本 这里可以看到是1.2.1 2.与hive结合 spark可以通过读取hive的元数据来兼容hive,读取hive的表数据,然 ...
- CentOS6安装各种大数据软件 第二章:Linux各个软件启动命令
相关文章链接 CentOS6安装各种大数据软件 第一章:各个软件版本介绍 CentOS6安装各种大数据软件 第二章:Linux各个软件启动命令 CentOS6安装各种大数据软件 第三章:Linux基础 ...
- 大数据入门第二十五天——elasticsearch入门
一.概述 推荐路神的ES权威指南翻译:https://es.xiaoleilu.com/010_Intro/00_README.html 官网:https://www.elastic.co/cn/pr ...
- 【若泽大数据实战第二天】Linux命令基础
Linux基本命令: 查看IP: ifconfig 或者 hostname -i(需要配置文件之后才可以使用) ipconfig(Windows) 关闭防火墙: Service iptables st ...
- 大数据入门第二十五天——logstash入门
一.概述 1.logstash是什么 根据官网介绍: Logstash 是开源的服务器端数据处理管道,能够同时 从多个来源采集数据.转换数据,然后将数据发送到您最喜欢的 “存储库” 中.(我们的存储库 ...
- Hadoop大数据学习视频教程 大数据hadoop运维之hadoop快速入门视频课程
Hadoop是一个能够对大量数据进行分布式处理的软件框架. Hadoop 以一种可靠.高效.可伸缩的方式进行数据处理适用人群有一定Java基础的学生或工作者课程简介 Hadoop是一个能够对大量数据进 ...
- 大数据学习第二章、HDFS相关概念
1.HDFS核心概念: 块 (1)为了分摊磁盘读写开销也就是大量数据间分摊磁盘寻址开销 (2)HDFS块比普通的文件块大很多,HDFS默认块大小为64MB,普通的只有几千kb 原因:1.支持面向大规模 ...
- spark大数据快速分析第二章
1.驱动程序通过一个SparkContext对象来访问Spark,此对象代表对计算集群的一个连接.shell已经自动创建了一个SparkContext对象.利用SparkContext对象来创建一个R ...
- 大数据框架开发基础之Sqoop(1) 入门
Sqoop是一款开源的工具,主要用于在Hadoop(Hive)与传统的数据库(mysql.postgresql...)间进行数据的传递,可以将一个关系型数据库(例如 : MySQL ,Oracle , ...
随机推荐
- C++调用IDL程序的做法(三)
作者:朱金灿 来源:http://blog.csdn.net/clever101 在C++调用IDL程序的做法(二)一文中介绍了如何动态创建IDLDrawWidgetControl的做法.假如我 ...
- SQLServer 2008(R2)如何开启数据库的远程连接
SQL Server 2008 R2如何开启数据库的远程连接 by:授客 QQ:1033553122 SQL Server 2008默认是不允许远程连接的,如果想要在本地用SSMS连接远程服务器上的S ...
- Expo大作战(二十五)--expo sdk api之Admob
简要:本系列文章讲会对expo进行全面的介绍,本人从2017年6月份接触expo以来,对expo的研究断断续续,一路走来将近10个月,废话不多说,接下来你看到内容,讲全部来与官网 我猜去全部机翻+个人 ...
- [原创]RedHat 安装MySQL数据库
朋友购买了阿里云的服务器,服务器上自带有CentOS操作系统,但是开发软件需要自己安装,接下来将介绍本地RedHat Linux 5.10虚拟机上搭建Mysql数据库. 一.软件准备 (1)jdk-6 ...
- TMOUT优化终端超时
有时候,管理员终端登陆了系统,如果离开没有退出账户,则会有安全隐患存在,因此需要优化终端超时. 设置终端超时: export TMOUT=10 永久生效: echo "export TMOU ...
- Markdown 进阶
目录 markdown进阶语法 内容目录 加强代码块 脚注 流程图 时序图 LaTeX公式 markdown进阶语法 内容目录 使用 [TOC] 引用目录,将 [TOC] 放至文本的首行,编辑器将自动 ...
- mysql 5.7.16 忘记root 密码 如何修改root密码
今天在电脑上安装 mysql5.7.16 (压缩包)时,在初始化data文件夹之后,没有记住密码,DOS框没有显示,没办法,为了学习一下怎么修改密码,在网上找了好多方法去解决,最终还是解决了,下面来 ...
- MSChart 设置饼图颜色 图例背景色 图例显示位置
chartField.Series.Clear(); chartField.ChartAreas.Clear(); chartField.Legends.C ...
- 深入学习css之background属性
css中允许应用纯色作为背景,也允许使用图片作为背景. background一共有8个对应的属性: 1.background-color:颜色值 用于设定背景的颜色 有3种定义颜色的形式, 1, 颜色 ...
- Articulate Presenter文字乱码的排除
Articulate Presenter乱码的问题如何设置? 字体乱码的设置: 1.首先如果ppt中有中文内容,肯定需要将Articulate Presenter的Character Set设置为No ...