CS229 笔记06

朴素贝叶斯

  • 事件模型

    事件模型与普通的朴素贝叶斯算法不同的是,在事件模型中,假设文本词典一共有 \(k\) 个词,训练集一共有 \(m\) 封邮件,第 \(i\) 封邮件的词的个数为 \(n_i\) ,则 \(x^{(i)} \in \{1,2,\cdots,k\}^{n_i}\) 。

    此时模型的参数为:

    \[
    \begin{eqnarray*}
    \phi_{k|y=0}&=&P(x_j=k|y=0)\\[1em]
    \phi_{k|y=1}&=&P(x_j=k|y=1)\\[1em]
    \phi_{y=0}&=&P(y=0)\\[1em]
    \phi_{y=1}&=&P(y=1)\\[1em]
    P(x,y)&=&\left(\prod_{j=1}^nP(x_j|y)\right)P(y)
    \end{eqnarray*}
    \]

神经网络

  • 简介

    这部分并没有详细讲。

支持向量机

  • 记号的声明

    \[
    \begin{eqnarray*}
    x,W&\in&{\Bbb R}^n\\[1em]
    y&\in&\{-1,1\}\\[1em]
    b&\in&{\Bbb R}\\[1em]
    g(z)&=&\begin{cases}1&z\geq0\\[1em]-1&z<0\end{cases}\\[1em]
    h_{W,b}(x)&=&g(W^{\rm T}x+b)
    \end{eqnarray*}
    \]

    超平面 \((W,b)\) 与一个样本 \((x^{(i)},y^{(i)})\) 的Functional Margin(函数间隔) \(\hat{\gamma}^{(i)}\) 定义为:

    \[
    \hat\gamma^{(i)}\xlongequal{def}y^{(i)}\left(W^{\rm T}x+b\right)
    \]

    超平面 \((W,b)\) 与整个训练集的函数间隔 \(\hat{\gamma}\) 定义为:

    \[
    \hat\gamma\xlongequal{def}\min_i\hat\gamma^{(i)}
    \]

    超平面 \((W,b)\) 与一个样本 \((x^{(i)},y^{(i)})\) 的Geometric Margin(几何间隔) \(\gamma^{(i)}\) 定义为样本 \((x^{(i)},y^{(i)})\) 与超平面 \((W,b)\) 之间的距离,则样本在超平面上的投影为:

    \[
    x^{(i)}-\frac{W}{||W||}\gamma^{(i)}
    \]

    该点满足:

    \[
    \begin{eqnarray*}
    W^{\rm T}\left(x^{(i)}-\frac{W}{||W||}\gamma^{(i)}\right)+b&=&0\\[1em]
    W^{\rm T}x^{(i)}+b&=&\frac{W^{\rm T}W}{||W||}\gamma^{(i)}\\[1em]
    W^{\rm T}x^{(i)}+b&=&||W||\gamma^{(i)}\\[1em]
    \gamma^{(i)}&=&\left(\frac{W}{||W||}\right)^{\rm T}x^{(i)}+\frac{b}{||W||}\\[1em]
    \end{eqnarray*}
    \]

    更一般地(为了考虑分类结果的正误),将几何间隔 \(\hat\gamma^{(i)}\) 定义为:

    \[
    \gamma^{(i)}\xlongequal{def}y^{(i)}\left[\left(\frac{W}{||W||}\right)^{\rm T}x^{(i)}+\frac{b}{||W||}\right]
    \]

    而一般会将参数 \(||W||​\) 归一化使其等于1,此时几何等于函数间隔:

    \[
    \gamma^{(i)}\xlongequal{def}y^{(i)}\left(W^{\rm T}x+b\right)
    \]

    超平面 \((W,b)\) 与整个训练集的几何间隔 \(\gamma\) 定义为:

    \[
    \gamma\xlongequal{def}\min_i\gamma^{(i)}
    \]

    学习算法的目的就是最大化几何间隔。

CS229 笔记06的更多相关文章

  1. 《30天自制操作系统》笔记(06)——CPU的32位模式

    <30天自制操作系统>笔记(06)——CPU的32位模式 进度回顾 上一篇中实现了启用鼠标.键盘的功能.屏幕上会显示出用户按键.点击鼠标的情况.这是通过设置硬件的中断函数实现的,可以说硬件 ...

  2. 强化学习读书笔记 - 06~07 - 时序差分学习(Temporal-Difference Learning)

    强化学习读书笔记 - 06~07 - 时序差分学习(Temporal-Difference Learning) 学习笔记: Reinforcement Learning: An Introductio ...

  3. JAVA自学笔记06

    JAVA自学笔记06 1.二维数组 1)格式: ①数据类型[][]数组名 = new 数据类型[m][n]; 或 数据类型[]数组名[]=new 数据类型[m][n]; m表示这个二维数组有多少个一维 ...

  4. 机器学习实战(Machine Learning in Action)学习笔记————06.k-均值聚类算法(kMeans)学习笔记

    机器学习实战(Machine Learning in Action)学习笔记————06.k-均值聚类算法(kMeans)学习笔记 关键字:k-均值.kMeans.聚类.非监督学习作者:米仓山下时间: ...

  5. CS229 笔记08

    CS229 笔记08 Kernel 回顾之前的优化问题 原始问题为: \[ \min_{w,b} \frac{1}{2}||w||^2\\[1.5em] {\text{s.t.}}y^{(i)}\le ...

  6. CS229 笔记07

    CS229 笔记07 Optimal Margin Classifier 回顾SVM \[ \begin{eqnarray*} h_{w,b}&=&g(w^{\rm T}x+b)\\[ ...

  7. CS229 笔记05

    CS229 笔记05 生成学习方法 判别学习方法的主要思想是假设属于不同target的样本,服从不同的分布. 例如 \(P(x|y=0) \sim {\scr N}(\mu_1,\sigma_1^2) ...

  8. CS229 笔记04

    CS229 笔记04 Logistic Regression Newton's Method 根据之前的讨论,在Logistic Regression中的一些符号有: \[ \begin{eqnarr ...

  9. CS229 笔记03

    CS229 笔记03 局部加权线性回归 Non-Parametric Learning Algorithm (非参数学习方法) Number of parameters grows with the ...

随机推荐

  1. 一、Unity Editor自定义菜单

    官方文档:https://unity3d.com/cn/learn/tutorials/topics/interface-essentials/unity-editor-extensions-menu ...

  2. [T-ARA][Ma boo]

    歌词来源:http://music.163.com/#/song?id=22704447 作曲 : 金道勋/Rhymer [作曲 : 金道勋/Rhymer] 作词 : 金道勋 [作词 : 金道勋] 사 ...

  3. session和cookie的作用和原理

    session和cookie作用原理,区别 Cookie概念 在浏览某些 网站 时,这些网站会把 一些数据存在 客户端 , 用于使用网站 等跟踪用户,实现用户自定义 功能. 是否设置过期时间: 如果不 ...

  4. 团队week9

    1. Bug bash ▪ How many bugs is found in your bug bash? Bug很多,就前端的用户管理部分发现的bug就有14个. 2. Write a blog ...

  5. KNY三人组对YiSmile小程序的项目总结

    设想和目标 1.我们的小程序要解决什么问题? 针对于本校学生,服务于本校学生.由于丢东西,找东西的事情每天都在上演,空间说说,朋友圈,官方QQ,信息比较冗杂,没有一个固定的平台来专门提供学生.此外,教 ...

  6. Mac用户抓包软件Charles 4.0 破解 以及 抓取Https链接设置

    相信大家曾经都是Window的用户,作为前端哪能没有一款抓包工具,抓包工具可以非常便捷的帮助我们分析接口返回报文数据,快速定位问题. 曾经横扫window用户的Fiddler便是我们的挚爱,然而,作为 ...

  7. Git 笔记——如何处理分支合并冲突

    1.前言 学习使用 Git 也有一段时间,但一直都是把 Git 当作一个代码仓库,使用的命令无非就是 clone, add, commit ,往往课程作业也没有过多人合作开发,没有体验过 Git 的分 ...

  8. 实现项目WC

    软件的需求分析 程序处理用户需求的模式为: wc.exe [parameter][filename] 在[parameter]中,用户通过输入参数与程序交互,需实现的功能如下: 1.基本功能 支持 - ...

  9. week3 团队博客作业

    团队自我介绍地址: http://www.cnblogs.com/liuliudashun/p/5919555.html

  10. Hibernate性能优化之EHCache缓存

    像Hibernate这种ORM框架,相较于JDBC操作,需要有更复杂的机制来实现映射.对象状态管理等,因此在性能和效率上有一定的损耗. 在保证避免映射产生低效的SQL操作外,缓存是提升Hibernat ...