CS229 笔记06
CS229 笔记06
朴素贝叶斯
事件模型
事件模型与普通的朴素贝叶斯算法不同的是,在事件模型中,假设文本词典一共有 \(k\) 个词,训练集一共有 \(m\) 封邮件,第 \(i\) 封邮件的词的个数为 \(n_i\) ,则 \(x^{(i)} \in \{1,2,\cdots,k\}^{n_i}\) 。
此时模型的参数为:
\[
\begin{eqnarray*}
\phi_{k|y=0}&=&P(x_j=k|y=0)\\[1em]
\phi_{k|y=1}&=&P(x_j=k|y=1)\\[1em]
\phi_{y=0}&=&P(y=0)\\[1em]
\phi_{y=1}&=&P(y=1)\\[1em]
P(x,y)&=&\left(\prod_{j=1}^nP(x_j|y)\right)P(y)
\end{eqnarray*}
\]
神经网络
简介
这部分并没有详细讲。
支持向量机
记号的声明
\[
\begin{eqnarray*}
x,W&\in&{\Bbb R}^n\\[1em]
y&\in&\{-1,1\}\\[1em]
b&\in&{\Bbb R}\\[1em]
g(z)&=&\begin{cases}1&z\geq0\\[1em]-1&z<0\end{cases}\\[1em]
h_{W,b}(x)&=&g(W^{\rm T}x+b)
\end{eqnarray*}
\]超平面 \((W,b)\) 与一个样本 \((x^{(i)},y^{(i)})\) 的Functional Margin(函数间隔) \(\hat{\gamma}^{(i)}\) 定义为:
\[
\hat\gamma^{(i)}\xlongequal{def}y^{(i)}\left(W^{\rm T}x+b\right)
\]超平面 \((W,b)\) 与整个训练集的函数间隔 \(\hat{\gamma}\) 定义为:
\[
\hat\gamma\xlongequal{def}\min_i\hat\gamma^{(i)}
\]超平面 \((W,b)\) 与一个样本 \((x^{(i)},y^{(i)})\) 的Geometric Margin(几何间隔) \(\gamma^{(i)}\) 定义为样本 \((x^{(i)},y^{(i)})\) 与超平面 \((W,b)\) 之间的距离,则样本在超平面上的投影为:
\[
x^{(i)}-\frac{W}{||W||}\gamma^{(i)}
\]该点满足:
\[
\begin{eqnarray*}
W^{\rm T}\left(x^{(i)}-\frac{W}{||W||}\gamma^{(i)}\right)+b&=&0\\[1em]
W^{\rm T}x^{(i)}+b&=&\frac{W^{\rm T}W}{||W||}\gamma^{(i)}\\[1em]
W^{\rm T}x^{(i)}+b&=&||W||\gamma^{(i)}\\[1em]
\gamma^{(i)}&=&\left(\frac{W}{||W||}\right)^{\rm T}x^{(i)}+\frac{b}{||W||}\\[1em]
\end{eqnarray*}
\]更一般地(为了考虑分类结果的正误),将几何间隔 \(\hat\gamma^{(i)}\) 定义为:
\[
\gamma^{(i)}\xlongequal{def}y^{(i)}\left[\left(\frac{W}{||W||}\right)^{\rm T}x^{(i)}+\frac{b}{||W||}\right]
\]而一般会将参数 \(||W||\) 归一化使其等于1,此时几何等于函数间隔:
\[
\gamma^{(i)}\xlongequal{def}y^{(i)}\left(W^{\rm T}x+b\right)
\]超平面 \((W,b)\) 与整个训练集的几何间隔 \(\gamma\) 定义为:
\[
\gamma\xlongequal{def}\min_i\gamma^{(i)}
\]学习算法的目的就是最大化几何间隔。
CS229 笔记06的更多相关文章
- 《30天自制操作系统》笔记(06)——CPU的32位模式
<30天自制操作系统>笔记(06)——CPU的32位模式 进度回顾 上一篇中实现了启用鼠标.键盘的功能.屏幕上会显示出用户按键.点击鼠标的情况.这是通过设置硬件的中断函数实现的,可以说硬件 ...
- 强化学习读书笔记 - 06~07 - 时序差分学习(Temporal-Difference Learning)
强化学习读书笔记 - 06~07 - 时序差分学习(Temporal-Difference Learning) 学习笔记: Reinforcement Learning: An Introductio ...
- JAVA自学笔记06
JAVA自学笔记06 1.二维数组 1)格式: ①数据类型[][]数组名 = new 数据类型[m][n]; 或 数据类型[]数组名[]=new 数据类型[m][n]; m表示这个二维数组有多少个一维 ...
- 机器学习实战(Machine Learning in Action)学习笔记————06.k-均值聚类算法(kMeans)学习笔记
机器学习实战(Machine Learning in Action)学习笔记————06.k-均值聚类算法(kMeans)学习笔记 关键字:k-均值.kMeans.聚类.非监督学习作者:米仓山下时间: ...
- CS229 笔记08
CS229 笔记08 Kernel 回顾之前的优化问题 原始问题为: \[ \min_{w,b} \frac{1}{2}||w||^2\\[1.5em] {\text{s.t.}}y^{(i)}\le ...
- CS229 笔记07
CS229 笔记07 Optimal Margin Classifier 回顾SVM \[ \begin{eqnarray*} h_{w,b}&=&g(w^{\rm T}x+b)\\[ ...
- CS229 笔记05
CS229 笔记05 生成学习方法 判别学习方法的主要思想是假设属于不同target的样本,服从不同的分布. 例如 \(P(x|y=0) \sim {\scr N}(\mu_1,\sigma_1^2) ...
- CS229 笔记04
CS229 笔记04 Logistic Regression Newton's Method 根据之前的讨论,在Logistic Regression中的一些符号有: \[ \begin{eqnarr ...
- CS229 笔记03
CS229 笔记03 局部加权线性回归 Non-Parametric Learning Algorithm (非参数学习方法) Number of parameters grows with the ...
随机推荐
- Docker操作命令
docker --直接输入 docker 命令来查看到 Docker 客户端的所有命令选项. docker [command] --help --深入的了解指定的 Docker 命令使用方法 dock ...
- PHP Laravel 连接并访问数据库
第一次连接数据库 数据库配置位于config/database.php数据库用户名及密码等敏感信息位于.env文件创建一个测试表laravel_course <?php namespace Ap ...
- PAT甲题题解-1036. Boys vs Girls (25)-找最大最小,大水题
题意:给出n个人的姓名.性别.ID.分数,让你找出其中哪个妹纸分数最高.哪个汉子分数最低.以及他们的差如果没有妹纸或者汉子,则对应输出Absent,差用NA代替. 就是for一遍找最大最小值,水题 # ...
- WPF和js交互 WebBrowser数据交互
this.webBrowser1.ObjectForScripting = new OprateBasic(); this.webBrowser1.Source = new Uri(Environme ...
- TAC队--团队选题报告
The Art of Code--团队选题报告 一个APP项目能否被大众所接受,能否拥有受众,the most important是它的idea. 一个好的idea可以为项目带来巨大的改变 一个 独特 ...
- Beta 冲刺 六
团队成员 051601135 岳冠宇 031602629 刘意晗 031602248 郑智文 031602330 苏芳锃 031602234 王淇 照片 项目进展 岳冠宇 昨天的困难 ActionBa ...
- 各小组Alpha版项目发布作品点评
第一组:新蜂小组 题目:俄罗斯方块 评论:主体功能已经完成,可以流畅的进行游戏,游戏素材都是由贴图美化过的,期待计分系统等的完善. 第二组:天天向上 题目:连连看 评论:核心功能完成,可以流畅的进行游 ...
- PAT 甲级 1105 Spiral Matrix
https://pintia.cn/problem-sets/994805342720868352/problems/994805363117768704 This time your job is ...
- Android 出现 maybe missing INTERNET permission 错误问题解决
在AndroidManifest.xml中,需要进行如下配置:<manifest> //加入以下许可 <uses-permission android:name="andr ...
- springsecurity实战
springsecurity是一种安全性框架,主要用于进行权限验证,下面是其基本使用方法: pom.xml <dependency> <groupId>org.springfr ...