[SDOI2009]Bill的挑战——全网唯一 一篇容斥题解
全网唯一一篇容斥题解
Description

Solution
看到这个题,大部分人想的是状压dp
但是我是个蒟蒻没想到,就用容斥切掉了。
并且复杂度比一般状压低,
(其实这个容斥的算法,提出来源于ywy_c_asm)
(然而我知道了这个算法,竟然和他写的不一样,而且比他跑的快)
进入正题:
我们需要统计恰好满足匹配k个的情况。
那么,我们可以先找出来,恰好满足n个,n-1,n-2。。。k个的情况。
分别记为ans[i]
ans[i]怎么算呢?
先给出公式:
ans[i]=cal(i)-∑C(j,i)×ans[j] 其中,i+1<=j<=n
cal(i)表示,从n个中任意选择i个,对于所有选择的情况,的方案数的和。
cal(i)可以dfs暴力C(n,i)枚举,每次统计答案。计入tot
void dfs(int x,int has){
if(x==n+){
if(has!=up) return;
ll lp=;
for(int j=;j<=len;j++){
las=-;
for(int i=;i<=up;i++){
if(a[mem[i]][j]!='?'){
if(las==-){
las=a[mem[i]][j]-'a';
}
else if(las!=a[mem[i]][j]-'a') return;
}
}
if(las==-)lp=(lp*)%mod;
}
(tot+=lp)%=mod;
return;
}
if(has<up) {
mem[++cnt]=x;
dfs(x+,has+);
mem[cnt--]=;
}
if(n-x>=up-has) dfs(x+,has);
}
至于后面减去的部分。就是容斥的内容了。
大家可以自己画一个韦恩图理解一下。

这里有一个例子:n=4
现在我们要算ans[2],也就是恰好匹配2个的T的方案数
就是黄色的部分。
红色的数字是这个区域被算cal(i)的次数。
可见,三个点的重复区域,由于有C(3,2)种方法选到,所以会被算C(3,2)次。
所以减去所有的ans[3]即可。
其他情况同理。
最后输出ans[1]
组合数打表。
理论复杂度:
O(n×len×2^15)
Code
#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
const int N=;
const int M=;
const int mod=;
char a[N][M];
int len;
int n,t,k;
int mem[N],cnt;
ll ans[N];
ll c[N][N];
ll sum;
ll tot;//tot measures
int up;//choose
int las;
void dfs(int x,int has){//dfs计算tot
if(x==n+){
if(has!=up) return;
ll lp=;
for(int j=;j<=len;j++){
las=-;
for(int i=;i<=up;i++){
if(a[mem[i]][j]!='?'){
if(las==-){
las=a[mem[i]][j]-'a';
}
else if(las!=a[mem[i]][j]-'a') return;//两个字符不一样,无合法方案
}
}
if(las==-)lp=(lp*)%mod;//如果都是‘?’可以随便填,否则只有一种
}
(tot+=lp)%=mod;
return;
}
if(has<up) {
mem[++cnt]=x;
dfs(x+,has+);
mem[cnt--]=;
}
if(n-x>=up-has) dfs(x+,has);
} void clear(){
memset(ans,,sizeof ans);
sum=;
len=;
}
int main()
{
for(int i=;i<=N-;i++){
c[i][]=;
for(int j=;j<=i;j++){
c[i][j]=(c[i-][j-]+c[i-][j])%mod;
}
}
scanf("%d",&t);
while(t--){
clear();//清空数组,其实没有必要
scanf("%d%d",&n,&k);
for(int i=;i<=n;i++){
scanf("%s",a[i]+);
}
len=strlen(a[]+);//长度 for(int i=n;i>=k;i--){//ans[i]计算
tot=;up=i;
dfs(,);
sum=;
for(int j=i+;j<=n;j++){//容斥的处理
(sum+=c[j][i]*ans[j])%=mod;
}
ans[i]=(tot-sum+mod)%mod;
}
printf("%lld\n",ans[k]);
}
return ;
}
[SDOI2009]Bill的挑战——全网唯一 一篇容斥题解的更多相关文章
- [BZOJ3523][Poi2014]KLO-Bricks——全网唯一 一篇O(n)题解+bzoj最优解
Description 有n种颜色的砖块,第i种颜色的砖块有a[i]个,你需要把他们放成一排,使得相邻两个砖块的颜色不相同,限定第一个砖块的颜色是start,最后一个砖块的颜色是end,请构造出一种合 ...
- 【BZOJ1879】[SDOI2009]Bill的挑战(动态规划)
[BZOJ1879][SDOI2009]Bill的挑战(动态规划) 题面 BZOJ 洛谷 题解 本来还想着容斥来着,这个数据范围直接暴力就好.设\(f[i][S]\)表示当前填到了第\(i\)位,和\ ...
- bzoj千题计划207:bzoj1879: [Sdoi2009]Bill的挑战
http://www.lydsy.com/JudgeOnline/problem.php?id=1879 f[i][j] 表示匹配了i个字符,匹配字符串的状态为j的方案数 枚举下一个字符是什么 计算加 ...
- 【BZOJ1879】[Sdoi2009]Bill的挑战 状压DP
[BZOJ1879][Sdoi2009]Bill的挑战 Description Input 本题包含多组数据. 第一行:一个整数T,表示数据的个数. 对于每组数据: 第一行:两个整数,N和K(含 ...
- bzoj 1879: [Sdoi2009]Bill的挑战
题目链接 bzoj 1879: [Sdoi2009]Bill的挑战 题解 n<=15,装压吧 对所有字符串进行装压 可以预处理一个数组can[i][j]表示所有的字符串中,有哪些可以在第i位匹配 ...
- [bzoj1879][Sdoi2009]Bill的挑战_动态规划_状压dp
Bill的挑战 bzoj-1879 Sdoi-2009 题目大意: 注释:$1\le t \le 5$,$1\le m \le 15$,$1\le length \le 50$. 想法: 又是一个看数 ...
- [LuoguP2167][SDOI2009]Bill的挑战_容斥原理/状压dp
Bill的挑战 题目链接:https://www.luogu.org/problem/P2167 数据范围:略. 题解: 因为$k$特别小,想到状压. 状压的方式也非常简单,就是暴力枚举. 但是会不会 ...
- 【[SDOI2009]Bill的挑战】
一看题解好像全是状压DP,那么我就来补充一个容斥写法吧 乍一看,好像是水题,枚举选哪k个串,然后判断 1,如果这k个串中至少两个串某位置确定且不相同,答案显然为02,如果这个位置只被有且仅有一个串确定 ...
- bzoj 1879 [Sdoi2009]Bill的挑战(状压DP)
Description Input 本题包含多组数据. 第一行:一个整数T,表示数据的个数. 对于每组数据: 第一行:两个整数,N和K(含义如题目表述). 接下来N行:每行一个字符串. Output ...
随机推荐
- mysql存储blob限制
一.Mysql存储类型分类: 1.blob:二进制大对象(字节流),可以用来存储图片.视频等,没有字符集的说法 2.text:文本大对象(字符流),存储大型字串,有字符集的说法 3.二者使用时不能指定 ...
- 10、MySQL 的复制
10.1 复制的概述 10.2 配置复制 10.3 复制的原理 有两种 1.基于sql语句的复制:传输数据少(sql语句文件),就能复制大量的数据,不过由于一些自定义的函数问题,会有一些限制: 2.基 ...
- [arm学习]makefile学习总结
makefile不仅仅是一个命令的集合体,其中有一些规则是需要理解掌握的. 首先,了解makefile的规则: //-----------格式---------- 目标 : 依赖1,依赖2 (TAP键 ...
- Egret(白鹭引擎)——“TypeError: Cannot read property 'asCom' of null”
前言 相信我,这个错误新手都不陌生:TypeError: Cannot read property 'asCom' of null 还有,一定要看我上一篇,哦不(人家应该是报了这个错,才找到看到这篇文 ...
- 金蝶盘点机PDA仓库条码管理:仓库如何盘点
1.1. 仓库盘点 传统的仓库盘点,需要人工手工抄写盘点单,时候再去电脑上一行行的录入盘点单,操作非常耗时费力,往往需要盘点好几天,最终盘点效果还不好,在抄写过程中容易出现错误,从而造成盘点结果不准确 ...
- kubeadm安装kubernetes 1.13.1集群完整部署记录
k8s是什么 Kubernetes简称为k8s,它是 Google 开源的容器集群管理系统.在 Docker 技术的基础上,为容器化的应用提供部署运行.资源调度.服务发现和动态伸缩等一系列完整功能,提 ...
- spark执行在yarn上executor内存不足异常ERROR YarnScheduler: Lost executor 542 on host-bigdata3: Container marked as failed: container_e40_1550646084627_1007653_01_000546 on host: host-bigdata3. Exit status: 143.
当spark跑在yarn上时 单个executor执行时,数据量过大时会导致executor的memory不足而使得rdd 最后lost,最终导致任务执行失败 其中会抛出如图异常信息 如图中异常所示 ...
- error: Build input file cannot be found: '*******/node_modules/react-native/Libraries/WebSocket/libfishhook.a' 问题解决记录
解决了刚才的'config.h' file not found问题,本以为就可以顺畅的跑起来,谁知道又被恶心到了,Build input file cannot be found!!! 问题: err ...
- Final互评------《飞词》---- 拉格朗日2018
一.基于NABCD评论作品,及改进建议 1.根据(不限于)NABCD评论作品的选题; N(Need,需求):拉格朗日2018团队对需求分析的做法是通过问卷调查的形式,通过问卷调查分析出目前的大学生群体 ...
- 《Linux内核》读书笔记 第十八章