最小割模板。

题意:你要在一个三维点阵的每个竖条中删去一个点,使得删去的点权和最小。

且相邻(四联通)的两竖条之间删的点的z坐标之差的绝对值不超过D。

解:

首先把这些都串起来,点边转化,就变成最小割了对吧。

那么限制条件怎么处理呢?

我们知道在最小割中流量为INF的边是割不断的,以此来连边,使得相邻的割点超过D不合法。

具体来说:把相邻的两条链中,差距刚好为D的点连起来。从上往下连INF。

这是D = 1的一个连边实例。

可以发现,我们割两个在同一高度的边是没问题的。

如果高度相差1也没问题。

如果左边的高2格,那么会被红色的边限制;如果右边的高2格又会被蓝色的边限制。

所以这样连边就能够满足限制条件了。

然后跑最小割即可。

 #include <cstdio>
#include <queue>
#include <algorithm>
#include <cstring> const int N = , M = , INF = 0x3f3f3f3f;
const int dx[] = {, , -, };
const int dy[] = {, , , -}; struct Edge {
int nex, v, c;
}edge[M << ]; int top = ; int e[N], d[N], m, n;
std::queue<int> Q; inline void add(int x, int y, int z) {
top++;
edge[top].v = y;
edge[top].c = z;
edge[top].nex = e[x];
e[x] = top; top++;
edge[top].v = x;
edge[top].c = ;
edge[top].nex = e[y];
e[y] = top;
return;
} inline bool BFS(int s, int t) {
memset(d, , sizeof(d));
d[s] = ;
Q.push(s);
while(!Q.empty()) {
int x = Q.front();
Q.pop();
for(int i = e[x]; i; i = edge[i].nex) {
int y = edge[i].v;
if(!edge[i].c || d[y]) {
continue;
}
d[y] = d[x] + ;
Q.push(y);
}
}
return d[t];
} int DFS(int x, int t, int maxF) {
if(x == t) {
return maxF;
}
int ans = ;
for(int i = e[x]; i; i = edge[i].nex) {
int y = edge[i].v;
if(!edge[i].c || d[x] + != d[y]) {
continue;
}
int temp = DFS(y, t, std::min(edge[i].c, maxF - ans));
if(!temp) {
d[y] = INF;
}
ans += temp;
edge[i].c -= temp;
edge[i ^ ].c += temp;
if(ans == maxF) {
break;
}
}
return ans;
} inline int solve(int s, int t) {
int ans = ;
while(BFS(s, t)) {
ans += DFS(s, t, INF);
}
return ans;
} inline int id(int x, int y, int z) {
return z * n * m + (x - ) * m + y;
} int main() {
int r, D, x;
scanf("%d%d%d%d", &n, &m, &r, &D);
for(int k = ; k <= r; k++) {
for(int i = ; i <= n; i++) {
for(int j = ; j <= m; j++) {
scanf("%d", &x);
add(id(i, j, k - ), id(i, j, k), x);
}
}
}
int s = n * m * (r + ) + ;
int t = s + ;
for(int i = ; i <= n; i++) {
for(int j = ; j <= m; j++) {
for(int k = D; k <= r; k++) {
for(int dir = ; dir < ; dir++) {
x = i + dx[dir];
int y = j + dy[dir];
if(x && y && x <= n && y <= m) {
add(id(i, j, k), id(x, y, k - D), INF);
}
}
}
add(s, id(i, j, ), INF);
add(id(i, j, r), t, INF);
}
} int ans = solve(s, t);
printf("%d", ans);
return ;
}

AC代码

洛谷P3227 切糕的更多相关文章

  1. 洛谷 P3227 BZOJ 3144 [HNOI2013]切糕

    题目描述 经过千辛万苦小 A 得到了一块切糕,切糕的形状是长方体,小 A 打算拦腰将切糕切成两半分给小 B.出于美观考虑,小 A 希望切面能尽量光滑且和谐.于是她找到你,希望你能帮她找出最好的切割方案 ...

  2. [洛谷P3227][HNOI2013]切糕

    题目大意:有一个$n\times m$的切糕,每一个位置的高度可以在$[1,k]$之间,每个高度有一个代价,要求四联通的两个格子之间高度最多相差$D$,问可行的最小代价.$n,m,k,D\leqsla ...

  3. 【洛谷 P3227】 [HNOI2013]切糕(最小割)

    题目链接 每层每个位置向下一层这个位置连边,流量为下一层这个位置的\(f\),源点向第一层连,流量第一层每个位置的费用,最后一层向汇点连,流量\(INF\). 这样就得到了\(P*Q\)条链,不考虑\ ...

  4. 洛谷 P3227 [HNOI2013]切糕(最小割)

    题解 Dinic求最小割 题目其实就是求最小的代价使得每个纵轴被分成两部分 最小割!!! 我们把每个点抽象成一条边,一个纵轴就是一条\(S-T\)的路径 但是题目要求\(|f(x,y)-f(x',y' ...

  5. 洛谷$P3227\ [HNOI2013]$切糕 网络流

    正解:网络流 解题报告: 传送门! 日常看不懂题系列,,,$QAQ$ 所以先放下题目大意趴$QwQ$,就说有个$p\cdot q$的矩阵,每个位置可以填一个$[1,R]$范围内的整数$a_{i,j}$ ...

  6. 洛谷1640 bzoj1854游戏 匈牙利就是又短又快

    bzoj炸了,靠离线版题目做了两道(过过样例什么的还是轻松的)但是交不了,正巧洛谷有个"大牛分站",就转回洛谷做题了 水题先行,一道傻逼匈牙利 其实本来的思路是搜索然后发现写出来类 ...

  7. 洛谷P1352 codevs1380 没有上司的舞会——S.B.S.

    没有上司的舞会  时间限制: 1 s  空间限制: 128000 KB  题目等级 : 钻石 Diamond       题目描述 Description Ural大学有N个职员,编号为1~N.他们有 ...

  8. 洛谷P1108 低价购买[DP | LIS方案数]

    题目描述 “低价购买”这条建议是在奶牛股票市场取得成功的一半规则.要想被认为是伟大的投资者,你必须遵循以下的问题建议:“低价购买:再低价购买”.每次你购买一支股票,你必须用低于你上次购买它的价格购买它 ...

  9. 洛谷 P2701 [USACO5.3]巨大的牛棚Big Barn Label:二维数组前缀和 你够了 这次我用DP

    题目背景 (USACO 5.3.4) 题目描述 农夫约翰想要在他的正方形农场上建造一座正方形大牛棚.他讨厌在他的农场中砍树,想找一个能够让他在空旷无树的地方修建牛棚的地方.我们假定,他的农场划分成 N ...

随机推荐

  1. 20155218《网络对抗》Exp3 免杀原理与实践

    20155218<网络对抗>Exp3 免杀原理与实践 一.使用msf生成后门程序的检测 (1)将上周msf生成的后门文件放在virscan.org中进行扫描,截图如下: (2)使用msf时 ...

  2. 2017-2018-2 20155315《网络对抗技术》Exp8 :Web基础

    实验目的 理解HTML,学会Web前端.Web后端和数据库编程及SQL注入.XSS攻击测试 教程 实验内容 操作程序规律 运行脚本或可执行文件 查看配置文件 出错找日志 Web前端HTML 能正常安装 ...

  3. pycharm如何在虚拟环境中引入别人的项目

    如果你想引入别人的项目,但是呢引入的项目可能与自己原先装的模块的版本产生冲突,而且如果引入一个项目就在本地进行运行使用,每个项目用的依赖包都不大相同,就会导致解释器安装包过多,就会导致加载过慢,甚至会 ...

  4. Windows 10无法使用debug的解决方案

    在学习汇编语言的时候,XP系统或者更早版本的默认在Dos命令下敲入debug即可进入汇编指令模式下,而在Windows 7及更高版本下,这些功能似乎都被阉割了,所以今天我们讲带大家处理一下如何解决这个 ...

  5. idou老师教你学istio :基于角色的访问控制

    istio的授权功能,也称为基于角色的访问控制(RBAC),它为istio服务网格中的服务提供命名空间级别.服务级别和方法级别的访问控制.基于角色的访问控制具有简单易用.灵活和高性能等特性.本文介绍如 ...

  6. 通过blockchain_go分析区块链交易原理

    原文链接-石匠的Blog 1.背景 在去中心化的区块链中进行交易(转账)是怎么实现的呢?本篇通过blockchain_go来分析一下.需要进行交易,首先就需要有交易的双方以及他们的认证机制,其次是各自 ...

  7. Notes of Daily Scrum Meeting(12.21)

    今天的燃尽图把周六的进度加了进来,由于我的失误没有及时更新TFS,所以出现了一些错误,向大家道歉. 下面是今天的任务总结: 团队成员 今日团队工作 陈少杰 继续进行网络连接的调试 王迪 测试搜索的功能 ...

  8. 《Linux内核分析》第五周

    20135103王海宁 <Linux内核分析>MOOC课程http://mooc.study.163.com/course/USTC-1000029000 这周的实验在上周实验四的基础上, ...

  9. Linux内核分析——第六周学习笔记20135308

    第六周 进程的描述和进程的创建 一.进程描述符task_struct数据结构 1.操作系统三大功能 进程管理 内存管理 文件系统 2.进程控制块PCB——task_struct 也叫进程描述符,为了管 ...

  10. 2017-2018 第一学期201623班《程序设计与数据结构》-第7&8周作业问题总结

    一.作业内容 第7周作业 http://www.cnblogs.com/rocedu/p/7484252.html#WEEK07 第8周作业 http://www.cnblogs.com/rocedu ...