考虑容斥,枚举一个子集S在1号猎人之后死。显然这个概率是w1/(Σwi+w1) (i∈S)。于是我们统计出各种子集和的系数即可,造出一堆形如(-xwi+1)的生成函数,分治NTT卷起来就可以了。

#include<iostream>
#include<cstdio>
#include<cmath>
#include<cstdlib>
#include<cstring>
#include<algorithm>
using namespace std;
#define ll long long
#define N 100010
#define P 998244353
char getc(){char c=getchar();while ((c<'A'||c>'Z')&&(c<'a'||c>'z')&&(c<''||c>'')) c=getchar();return c;}
int gcd(int n,int m){return m==?n:gcd(m,n%m);}
int read()
{
int x=,f=;char c=getchar();
while (c<''||c>'') {if (c=='-') f=-;c=getchar();}
while (c>=''&&c<='') x=(x<<)+(x<<)+(c^),c=getchar();
return x*f;
}
int n,a[N],s[N],r[N*],inv[N*],f[N*],t,ans;
int ksm(int a,int k)
{
int s=;
for (;k;k>>=,a=1ll*a*a%P) if (k&) s=1ll*s*a%P;
return s;
}
void DFT(int *a,int n,int g)
{
for (int i=;i<n;i++) r[i]=(r[i>>]>>)|(i&)*(n>>);
for (int i=;i<n;i++) if (i<r[i]) swap(a[i],a[r[i]]);
for (int i=;i<=n;i<<=)
{
int wn=ksm(g,(P-)/i);
for (int j=;j<n;j+=i)
{
int w=;
for (int k=j;k<j+(i>>);k++,w=1ll*w*wn%P)
{
int x=a[k],y=1ll*w*a[k+(i>>)]%P;
a[k]=(x+y)%P,a[k+(i>>)]=(x-y+P)%P;
}
}
}
}
void mul(int *a,int *b,int n)
{
DFT(a,n,),DFT(b,n,);
for (int i=;i<n;i++) a[i]=1ll*a[i]*b[i]%P;
DFT(a,n,inv[]);
for (int i=;i<n;i++) a[i]=1ll*a[i]*inv[n]%P;
}
void solve(int l,int r,int *f,int n)
{
if (l==r) {f[]=,f[a[l]]=P-;return;}
int a[n]={},mid=l;
for (int i=l;i<=r;i++) if (s[i]-s[l-]>s[r]-s[i]) {mid=i;break;}
if (mid==r) mid--;
int t1=;while (t1<=(s[mid]-s[l-]<<)) t1<<=;
solve(l,mid,f,t1);
t1=;while (t1<=(s[r]-s[mid]<<)) t1<<=;
solve(mid+,r,a,t1);
mul(f,a,n);
}
int main()
{
#ifndef ONLINE_JUDGE
freopen("loj2541.in","r",stdin);
freopen("loj2541.out","w",stdout);
const char LL[]="%I64d\n";
#else
const char LL[]="%lld\n";
#endif
n=read();
for (int i=;i<=n;i++) s[i]=s[i-]+(a[i]=read());
t=;while (t<=(s[n]<<)) t<<=;
inv[]=;for (int i=;i<N*;i++) inv[i]=P-1ll*(P/i)*inv[P%i]%P;
solve(,n,f,t);
for (int i=;i<=s[n];i++)
ans=(ans+1ll*a[]*inv[i+a[]]%P*f[i])%P;
cout<<ans;
return ;
}

LOJ2541 PKUWC2018猎人杀(概率期望+容斥原理+生成函数+分治NTT)的更多相关文章

  1. 【洛谷5644】[PKUWC2018] 猎人杀(容斥+生成函数+分治NTT)

    点此看题面 大致题意: 有\(n\)个人相互开枪,每个人有一个仇恨度\(a_i\),每个人死后会开枪再打死另一个还活着的人,且第一枪由你打响.设当前剩余人仇恨度总和为\(k\),则每个人被打中的概率为 ...

  2. LOJ2541 PKUWC2018 猎人杀 期望、容斥、生成函数、分治

    传送门 首先,每一次有一个猎人死亡之后\(\sum w\)会变化,计算起来很麻烦,所以考虑在某一个猎人死亡之后给其打上标记,仍然计算他的\(w\),只是如果打中了一个打上了标记的人就重新选择.这样对应 ...

  3. [LOJ2541] [PKUWC2018] 猎人杀

    题目链接 LOJ:https://loj.ac/problem/2541 Solution 很巧妙的思路. 注意到运行的过程中概率的分母在不停的变化,这样会让我们很不好算,我们考虑这样转化:假设所有人 ...

  4. [LOJ2541][PKUWC2018]猎人杀(容斥+分治+FFT)

    https://blog.csdn.net/Maxwei_wzj/article/details/80714129 n个二项式相乘可以用分治+FFT的方法,使用空间回收可以只开log个数组. #inc ...

  5. LOJ2541. 「PKUWC2018」猎人杀 [概率,分治NTT]

    传送门 思路 好一个神仙题qwq 首先,发现由于一个人死之后分母会变,非常麻烦,考虑用某种方法定住分母. 我们稍微改一改游戏规则:一个人被打死时只打个标记,并不移走,也就是说可以被打多次但只算一次.容 ...

  6. [PKUWC2018]猎人杀

    题解 感觉是一道神题,想不出来 问最后\(1\)号猎人存活的概率 发现根本没法记录状态 每次转移的分母也都不一样 可以考虑这样一件事情: 如果一个人被打中了 那么不急于从所有人中将ta删除,而是给ta ...

  7. 题解-PKUWC2018 猎人杀

    Problem loj2541 题意概要:给定 \(n\) 个人的倒霉度 \(\{w_i\}\),每回合会有一个人死亡,每个人这回合死亡的概率为 自己的倒霉度/目前所有存活玩家的倒霉度之和,求第 \( ...

  8. 洛谷 P5644 - [PKUWC2018]猎人杀(分治+NTT)

    题面传送门 很久之前(2020 年)就听说过这题了,这么经典的题怎么能只听说而亲自做一遍呢 首先注意到每次开枪打死一个猎人之后,打死其他猎人概率的分母就会发生变化,这将使我们维护起来非常棘手,因此我们 ...

  9. LOJ2542 PKUWC2018随机游走(概率期望+容斥原理)

    如果直接dp,状态里肯定要带上已走过的点的集合,感觉上不太好做. 考虑一种对期望的minmax容斥:其中Max(S)为遍历完S集合的期望步数,Min(S)为遍历到S集合中一个点的期望步数.当然才不管怎 ...

随机推荐

  1. 开关电源五种PWM反馈控制模式

    开关电源五种PWM反馈控制模式 来源:--作者:--浏览:178时间:2016-08-10 14:18 关键词: 1 引言 PWM开关稳压或稳流电源基本工作原理就是在输入电压变化.内部参数变化.外接负 ...

  2. stm32中assert_param的用法说明

    stm32中assert_param的用法说明   首先是要知道条件判断语句 这个运算符分成三部分: (条件) ? (条件成立执行部分) :(条件不成立执行部分) 就这么简单 例如:a=(x>y ...

  3. SVN之 trunk, branches and tags意义

    --简单的对照 SVN的工作机制在某种程度上就像一颗正在生长的树: 一颗有树干和很多分支的树 分支从树干生长出来.而且细的分支从相对较粗的树干中长出 一棵树能够仅仅有树干没有分支(可是这样的情况不会持 ...

  4. 网络对抗技术 2017-2018-2 20152515 Exp3 免杀原理与实践

    基础问题回答 (1)杀软是如何检测出恶意代码的? 答:分析恶意程序的行为特征,分析其代码流将其性质归类于恶意代码. (2)免杀是做什么? 答:一般是对恶意软件做处理,让它不被杀毒软件所检测,也是渗透测 ...

  5. 汇编-MOV指令

    知识点:  MOV指令  基址  内联汇编  把OD附加到资源管理器右键菜单 一.MOV指令 aaa=0x889977;//MOV DWORD PTR DS:[0x403018],0x8899 ...

  6. linux 定时器原理

    内核定时器:    unsigned long timeout = jiffies + (x * HZ);    while(1) {        // Check the condition.   ...

  7. 洛咕 P3756 [CQOI2017]老C的方块

    四染色,贼好想 一个弃疗图形刚好对应一个红-绿-黄-粉色路线(不要吐槽颜色) 就是裸的最小割,建图傻逼懒得写了 #include<bits/stdc++.h> #define il inl ...

  8. libgdx学习记录16——资源加载器AssetManager

    AssetManager用于对游戏中的资源进行加载.当游戏中资源(图片.背景音乐等)较大时,加载时会需要较长时间,可能会阻塞渲染线程,使用AssetManager可以解决此类问题. 主要优点: 1. ...

  9. idea git pull项目到本地时容易出现的问题

    有时候pull到本地,出了各种错误,其实是因为搞来搞去的,容易出问题,所以最好的方法是拿原有打包好的整个稳定能跑的项目环境, 先git add,然后vcs重置head为hard,然后再pull,一般就 ...

  10. centos 6.5 搭建开源堡垒机 Teleport 遇到的问题解决

    几款开源的堡垒机 下面进行 teleport 的安装: https://docs.tp4a.com/install/#11 异常1:libc.so.6: version `GLIBC_2.14' no ...