hdu6444 Neko's Loop
要想A一道题,你需要正版ide,正版草稿纸,正版键盘,正版双手,但最重要的是正版大脑.(改编自wxf在微积分群的吐槽)
分析一下题意,选的所有数的下标模gcd(n,k)都是同余的,而且是在所有同余的下标上循环.
对不同余数的下标分别处理,分别转换为在一串长度为N=n/gcd(n,k)的数上一格一格往右边走,走到头循环回来时,走m步最多能得到多大的和.
考虑对所有数字求个和sum.如果sum<0,那么最优方案走的步数不会超过N(否则少走连续N步一定使答案变优),只需要单调队列求带长度限制的最大区间和.
如果sum>0,那么只要m>N,则最优方案走的步数不会少于m-N步(否则多走N步使得答案变大)
sum>0的时候解题的想法还是要转化为求一个最大区间和.以走m/N*N步的方案为基准(这个方案不管从哪里开始走都得到相同的答案),考虑多走或者少走几步,但是总步数在[m-N,m]变化.多走几步的情况就是找一个带长度限制的最大区间和,少走几步的情况就是找一个带长度限制的最小区间和把它从答案里去掉.都是单调队列就能搞定.借助函数指针可以把最大区间和以及最小区间和写成一个函数.
#include<cstdio>
typedef long long ll;
const int maxn=10005;
ll max(ll a,ll b){
return a>b?a:b;
}
ll min(ll a,ll b){
return a<b?a:b;
}
int a[maxn],b[maxn];
ll pre[maxn<<1];
int gcd(int a,int b){
return (b==0)?a:gcd(b,a%b);
}
int q[maxn<<1];
int head=0,tail=0;
void push(int x,ll cmp(ll,ll)){
while(head!=tail&&(cmp(pre[x],pre[q[tail-1]])==pre[q[tail-1]]))tail--;
q[tail++]=x;
}
void pop(int lim){
while(head!=tail&&q[head]<=lim)head++;
}
ll get_extreme(int N,int M,ll cmp(ll,ll)){
ll ans=0;head=tail=0;
push(0,cmp);
for(int i=1;i<=N;++i){
ans=cmp(ans,pre[i]-pre[q[head]]);
push(i,cmp);
pop(i-M);
}
return ans;
}
ll calc(){
int n;ll s;int m,k;
scanf("%d%lld%d%d",&n,&s,&m,&k);
for(int i=0;i<n;++i)scanf("%d",a+i);
int period=gcd(n,k);
int N=n/period;
ll ans=0;
for(int i=0;i<period;++i){
for(int j=i,p=0;p<N;j=(j+k)%n){
b[++p]=a[j];
}
pre[0]=0;
for(int j=1;j<=N;++j)pre[j]=pre[j-1]+b[j];
for(int j=1;j<=N;++j)pre[j+N]=pre[j]+pre[N];
if(pre[N]<=0||m<=N){
ans=max(ans,get_extreme(2*N,min(N,m),max));
}else{
int mm=m/N*N;
int hidlt=m-mm;
int lodlt=N-hidlt;
ans=max(ans,m/N*1ll*pre[N]+get_extreme(2*N,hidlt,max));
ans=max(ans,m/N*1ll*pre[N]-get_extreme(2*N,lodlt,min));
}
}
return max(0,s-ans);
}
int main(){
int T;scanf("%d",&T);
for(int i=1;i<=T;++i){
printf("Case #%d: %lld\n",i,calc());
}
return 0;
}
hdu6444 Neko's Loop的更多相关文章
- 2018 CCPC网络赛 hdu6444 Neko's loop
题目描述: Neko has a loop of size n.The loop has a happy value ai on the i−th(0≤i≤n−1) grid. Neko likes ...
- hdu6444 2018中国大学生程序设计竞赛 - 网络选拔赛 1007 Neko's loop
Neko's loop Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/65536 K (Java/Others) Total S ...
- hdu 6444 网络赛 Neko's loop(单调队列 + 裴蜀定理)题解
题意:有编号为0~n-1的n个游戏,每个活动都有一个价值(可为负),给你m,s和k,你可以从任意一个编号开始玩,但是下一个游戏必须是编号为(i + k)%n的游戏,你最多能玩m次游戏,问你如果最后你手 ...
- hdu 6444 Neko's loop 单调队列优化DP
Neko's loop Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/65536 K (Java/Others)Total ...
- Neko's loop HDU-6444(网络赛1007)
题意就是给出n个数,在n个数上每次跳k个数,最多可以跳m次,你可以选择跳任意次,也可以都不跳,问你为了达到目标了快乐值至少在开始的需要多少快乐值. 题目可以转换成找出循环节,然后再循环节上疯狂试探我可 ...
- HDU 6444 Neko's loop(单调队列)
Neko has a loop of size nn. The loop has a happy value aiai on the i−th(0≤i≤n−1)i−th(0≤i≤n−1) grid. ...
- HDU - 6444 Neko's loop(循环节+最大子段和)
http://acm.hdu.edu.cn/showproblem.php?pid=6444 题意 一个有n个数的环,每次循环走k步,走到每个点都有具体的权值,问在任意点出发最多走m步的情况下,一开始 ...
- 【hdu 6444】Neko's loop
[链接] 我是链接,点我呀:) [题意] 给你一个序列. 你可以选择起点i. 然后每次往右跳k次. 得到下一个值a[i+k];. 问你跳m次能得到的最大值ma是多少. 如果>=s输出0 否则输出 ...
- HDU 6444 Neko's loop ( 2018 CCPC 网络赛 && 裴蜀定理 && 线段树 )
题目链接 题意 : 给出一个 n 个元素的环.可以任意选择起点.选完起点后.可以行走 m 步.每次前进 k 个单位.所走到的点将产生正或负贡献.问你一开始得准备多少才能使得初始资金加上在环上获取最大利 ...
随机推荐
- redis cluster应用连接(password)
application.properties 集群配置 application.properties #各Redis节点信息spring.redis.cluster.nodes=47.96.*.*:6 ...
- zookeeper&acticemq&redis&tomcat安装
zookeeper安装 配置hosts 下载 wget http://apache.fayea.com/zookeeper/zookeeper-3.4.6/zookeeper-3.4.6.tar. ...
- JAVA框架 Mybaits 动态代理
一.动态代理: mybaits给咱们提供一套动态代理,我们只需要按他的要求写接口即可,mybatis帮做动态代理,相当于咱们写的接口的实现类.底层通过反射实例化代理对象,通过代理对象调用相应的方法, ...
- 大数据入门第二十五天——elasticsearch入门
一.概述 推荐路神的ES权威指南翻译:https://es.xiaoleilu.com/010_Intro/00_README.html 官网:https://www.elastic.co/cn/pr ...
- 大数据入门第十六天——流式计算之storm详解(二)常用命令与wc实例
一.常用命令 1.提交命令 提交任务命令格式:storm jar [jar路径] [拓扑包名.拓扑类名] [拓扑名称] torm jar examples/storm-starter/storm-st ...
- 大数据入门第十四天——Hbase详解(三)hbase基本原理与MR操作Hbase
一.基本原理 1.hbase的位置 上图描述了Hadoop 2.0生态系统中的各层结构.其中HBase位于结构化存储层,HDFS为HBase提供了高可靠性的底层存储支持, MapReduce为HBas ...
- 20155306 白皎 《网络攻防》 EXP7 网络欺诈技术防范
20155306 白皎 <网络攻防> EXP7 网络欺诈技术防范 问题回答 (1)通常在什么场景下容易受到DNS spoof攻击 局域网内的攻击以及连接公众场所的共享wifi (2)在日常 ...
- # 20155319 Exp3 免杀原理与实践
20155319 Exp3 免杀原理与实践 基础问题 (1)杀软是如何检测出恶意代码的? 基于特征码的检测 启发式的恶意软件检测 基于行为的恶意软件检测 (2)免杀是做什么? 免杀,从字面进行理解,避 ...
- asp.net mvc2+nhibernate实体类映射问题之“尝试创建Controller类型的控制器时出错请确保控制器具有无参数公共构造函数”
程序出了问题,解决后发现如此简单,犯的错误是如此的低级啊,特此记录! 运行程序总是在浏览器中看到一片空白,什么也没有,用application_error跟踪发现抓出一个这样的异常 然后浏览器中就是这 ...
- 上google的方法
最近Google又被墙了....哎,纠结..... 说实话,咱都是良民,爱党爱国,真心不想干啥,只想查点资料的,输入google都上不去了. 方法: 1. FQ.很麻烦,有时候改来改去也容易出错,速度 ...