题目大意:有$n$个人,区间大小为$m$,每个人必须覆盖一段区间$[l_i,r_i]$,问你存在多少种不同的覆盖方案,使得区间上每个位置被覆盖的次数不超过$t$。

两种方案被定义为不同当且仅当存在第i个人覆盖的区间不同。

求方案数,对一个质数取模。

数据范围:$n,m,t≤40$

我们考虑dp。

设$f[i][j][k]$表示区间的前i个位置,总共有$j$个人参与了覆盖,且有$k$个人同时覆盖了位置$i$,位置$i+1$的方案数。

我们考虑枚举$J$和$K$,需要保证$j<J$

那么我们显然可以用f[i][j][k]的值去更新$f[i+1][J][K]$的值。

从$f[i][j][k]$到$f[i+1][J][K]$,用的人数多了$J-j$个,我们要从$n-j$个人中选出$J-j$个人去增加总人数,方案数显然为$\binom {n-j}{J-j}$。

然后,我们还要保证有$K$个人可以覆盖到$i+2$,而这$K$个人显然只能从$k+(J-j)$个人中选出,方案数显然为$\binom {k+(J-j)}{K}$。

那么转移方程大概长这样:

$f[i+1][J][K]+=f[i][j][k]\times \binom{n-j}{J-j}\times \binom{J-j+k}{K}$

复杂度为$O(nk^4)$

 #include<bits/stdc++.h>
#define L long long
#define M 55
#define MOD 1011110011
using namespace std; L n,m,t,c[M][M]={},f[M][M][M]={}; int main(){
for(int i=;i<M;i++){
c[i][]=;
for(int j=;j<=i;j++) c[i][j]=(c[i-][j]+c[i-][j-])%MOD;
}
cin>>n>>m>>t;
f[][][]=;
for(int i=;i<n;i++)
for(int j=;j<=m;j++)
for(int k=;k<=j;k++)
if(f[i][j][k]){
for(int J=j;J<=m;J++)
for(int K=;K<=J;K++){
int cnt=J-j+k;
if(cnt>t) continue;
(f[i+][J][K]+=f[i][j][k]*c[m-j][J-j]%MOD*c[cnt][K]%MOD)%=MOD;
}
}
cout<<f[n][m][]<<endl;
}

【xsy2425】容器 dp的更多相关文章

  1. Solid Dominoes Tilings (轮廓线dp打表 + 容器)

    第一步先打一个表,就是利用轮廓线DP去打一个没有管有没有分界线组合数量的表 #include<bits/stdc++.h> using namespace std; ; <<; ...

  2. luogu 6046 纯粹容器 期望dp

    LINK:纯粹容器 一道比较不错的期望题目. 关键找到计算答案的方法. 容易发现对于每个点单独计算答案会好处理一点. 暴力枚举在第k轮结束统计情况 然后最后除以总方案数即可. 考虑在第k轮的时候结束 ...

  3. BZOJ 1010: [HNOI2008]玩具装箱toy [DP 斜率优化]

    1010: [HNOI2008]玩具装箱toy Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 9812  Solved: 3978[Submit][St ...

  4. 项目安排(离散化+DP)

    题目来源:网易有道2013年校园招聘面试二面试题 题目描述: 小明每天都在开源社区上做项目,假设每天他都有很多项目可以选,其中每个项目都有一个开始时间和截止时间,假设做完每个项目后,拿到报酬都是不同的 ...

  5. Material Design Lite,简洁惊艳的前端工具箱 之 容器组件。

    本文版权归作者和博客园共有,欢迎转载,但未经作者同意必须保留此段声明,且在文章页面明显位置给出原文连接,博客地址为http://www.cnblogs.com/jasonnode/ .网站上有对应每一 ...

  6. 【BZOJ-1010】玩具装箱toy DP + 斜率优化

    1010: [HNOI2008]玩具装箱toy Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 8432  Solved: 3338[Submit][St ...

  7. TypedValue.applyDimension 中dp和sp之间转化的真相

    转载自http://www.cnblogs.com/xilinch/p/4444833.html 最近在看了许多关于dp-px,px-dp,sp-px,px-sp之间转化的博文,过去我比较常用的方式是 ...

  8. BZOJ 1010: [HNOI2008]玩具装箱toy 斜率优化DP

    1010: [HNOI2008]玩具装箱toy Description P教授要去看奥运,但是他舍不下他的玩具,于是他决定把所有的玩具运到北京.他使用自己的压缩器进行压缩,其可以将任意物品变成一堆,再 ...

  9. BZOJ 1010 玩具装箱toy(四边形不等式优化DP)(HNOI 2008)

    Description P教授要去看奥运,但是他舍不下他的玩具,于是他决定把所有的玩具运到北京.他使用自己的压缩器进行压缩,其可以将任意物品变成一堆,再放到一种特殊的一维容器中.P教授有编号为1... ...

随机推荐

  1. 2018.11.01 洛谷P3953 逛公园(最短路+dp)

    传送门 设f[i][j]f[i][j]f[i][j]表示跟最短路差值为iii当前在点jjj的方案数. in[i][j]in[i][j]in[i][j]表示在被选择的集合当中. 大力记忆化搜索就行了. ...

  2. Linux 目录说解

    目录 1.树状目录结构图 2./目录 3./etc/目录 4./usr/目录 5./var/目录 6./proc/目录 7./dev/目录 该文章主要来自于网络进行整理. 目录结构参考地址: http ...

  3. mongoDB的安装与连接

    1.安装mongoDB 官网下载安装: https://www.mongodb.com/download-center/community 安装时选择自定义设置,安装到C盘program Files文 ...

  4. Latex表格插入

    \begin{table}[h] \centering \caption{Traffic flows description} \begin{tabular}{|c||c|c|c|c|} \hline ...

  5. JAVA经典算法40+

    现在是3月份,也是每年开年企业公司招聘的高峰期,同时有许多的朋友也出来找工作.现在的招聘他们有时会给你出一套面试题或者智力测试题,也有的直接让你上机操作,写一段程序.算法的计算不乏出现,基于这个原因我 ...

  6. 学以致用一 安装centos7.2虚拟机

    5说来惭愧,也是很久没来博客园了.距离上次写的已经快一年,只能说时间过的真的很快. 而如果这一年一直在坚持认真学习的话,收获肯定很多.然而我确又浪费了很多光阴,不得不恨这人生苦短. 在这一年里,小孩还 ...

  7. SRM474

    250pt 题意:在一个N维的空间里,有一个人开始在原点,现在给出N<=50个指令序列,每个指令序列为某一维+1或者减一,问是否经过某个点至少2次. 思路:操作很小,直接模拟判断即可 code: ...

  8. SRM469

    250pt 在一个10^9 * 10^9大的剧院里,有最多47个位子有人,然后有一对couple想找一对左右相邻的位子,问有多少种选择方式. 思路: 总共有 n * (m-1)种方案,然后扣掉有人位置 ...

  9. 学习JavaScript计划

    1.首先根据视频做小例子 2.每天记录到博客 3.这次坚持把这个学完,并完成接口测试界面的编写

  10. DXP常用有效的快捷操作记录

    1.在PCB中快速选中一个器件 1)  M+C+Enter将弹出元件对话框,移动一个元件后,在十字架光标 状态时按[Enter]键 2)M(Move)+M(Move)按下时,鼠标光标变成“+”后,点击 ...