2019.01.21 bzoj2989: 数列(二进制分组+主席树)
传送门
二进制分组入门题。
主席树写错调题2h+2h+2h+体验极差。
题意简述:给一堆点,支持加入一个点,询问有多少个点跟(x,y)(x,y)(x,y)曼哈顿距离不超过kkk。
思路:题目要求的是对于一个斜着的正方形的查询。
我们考虑转切比雪夫距离转成正常的正方形。
然后就变成了一个动态的二维数点问题。
这个时候已经可以上cdqcdqcdq分治+扫描线或者树套树切题啦。
然而还有一种叫做二进制分组的方法可以支持强制在线的操作。
我们考虑将修改分组,例如对于前19=16+2+119=16+2+119=16+2+1个修改操作可以把它拆成第111 ~ 161616个修改操作,第171717~181818个修改操作,第191919个修改操作这三组,每个组分别维护自己的答案,询问就从各个组分别询问之后把答案累加起来。
然后如果现在又来了第202020个操作,就需要把最后两个合并成一组,变成20=16+2+220=16+2+220=16+2+2,接着发现最后两个组都是222,又需要把最后两个合并成一组,变成20=16+420=16+420=16+4。
即我们模拟二进制数的进位来对修改操作进行组与组之间的合并
可以发现这样的时间复杂度是O(nlogn2)O(nlog_n^2)O(nlogn2)的,足以通过所有测试点。
最后提一下合并时候的处理方法:我们暴力删除最后一个组,然后重构倒数第二个组
代码:
#include<bits/stdc++.h>
#define ri register int
#define fi first
#define se second
using namespace std;
inline int read(){
int ans=0;
char ch=getchar();
while(!isdigit(ch))ch=getchar();
while(isdigit(ch))ans=(ans<<3)+(ans<<1)+(ch^48),ch=getchar();
return ans;
}
const int N=2e5+5,K=1e7+5,lim=2e5,Maxn=100000;
int n,m,a[N],rt[20][N],tp=0;
struct segement_tree{
#define lc (son[p][0])
#define rc (son[p][1])
#define mid (l+r>>1)
int siz[K],son[K][2],stk[K],top;
bool vis[K];
segement_tree(){memset(siz,0,sizeof(siz)),memset(son,0,sizeof(son)),top=0;for(ri i=1;i<K;++i)stk[++top]=i,vis[i]=0;}
inline int newnode(){return vis[stk[top]]=1,stk[top--];}
inline void insert(int&p,int o,int l,int r,int k){
siz[p=newnode()]=siz[o]+1,lc=son[o][0],rc=son[o][1];
if(l==r)return;
k<=mid?insert(lc,son[o][0],l,mid,k):insert(rc,son[o][1],mid+1,r,k);
}
inline int query(int pl,int pr,int l,int r,int ql,int qr){
if(ql<=l&&r<=qr)return siz[pr]-siz[pl];
if(qr<=mid)return query(son[pl][0],son[pr][0],l,mid,ql,qr);
if(ql>mid)return query(son[pl][1],son[pr][1],mid+1,r,ql,qr);
return query(son[pl][0],son[pr][0],l,mid,ql,qr)+query(son[pl][1],son[pr][1],mid+1,r,ql,qr);
}
inline void delet(int&p){
if(!vis[p])return;
stk[++top]=p,vis[p]=0,delet(lc),delet(rc),siz[p]=0,p=0;
}
}T;
typedef pair<int,int> pii;
vector<pii>v[20];
inline void update(int x,int y){
v[++tp].push_back(pii(x,y));
T.insert(rt[tp][1],rt[tp][0],1,lim,y);
while(tp>1&&v[tp].size()==v[tp-1].size()){
int p1=0,p2=0;
vector<pii>tmp;
for(ri i=1;i<=v[tp].size();++i)T.delet(rt[tp][i]);
for(ri i=1;i<=v[tp-1].size();++i)T.delet(rt[tp-1][i]);
while(p1<v[tp-1].size()||p2<v[tp].size()){
if(p1<v[tp-1].size()&&(p2==v[tp].size()||v[tp-1][p1]<v[tp][p2]))tmp.push_back(v[tp-1][p1++]);
else tmp.push_back(v[tp][p2++]);
T.insert(rt[tp-1][p1+p2],rt[tp-1][p1+p2-1],1,lim,tmp[p1+p2-1].se);
}
v[tp-1]=tmp,v[tp].clear(),--tp;
}
}
inline int query(int x,int y,int k){
int ret=0;
for(ri p1,p2,i=1;i<=tp;++i){
p1=lower_bound(v[i].begin(),v[i].end(),pii(x-k,0))-v[i].begin();
p2=lower_bound(v[i].begin(),v[i].end(),pii(x+k,1e9))-v[i].begin();
ret+=T.query(rt[i][p1],rt[i][p2],1,lim,max(1,y-k),min(lim,y+k));
}
return ret;
}
int main(){
n=read(),m=read();
for(ri i=1;i<=n;++i)a[i]=read(),update(a[i]+i,a[i]-i+Maxn);
for(ri i=1,x,y;i<=m;++i){
char s[2];
scanf("%s",s);
x=read(),y=read();
if(s[0]=='M')a[x]=y,update(a[x]+x,a[x]-x+Maxn);
else cout<<query(a[x]+x,a[x]-x+Maxn,y)<<'\n';
}
return 0;
}
2019.01.21 bzoj2989: 数列(二进制分组+主席树)的更多相关文章
- [BZOJ 2989]数列(二进制分组+主席树)
[BZOJ 2989]数列(二进制分组+主席树) 题面 给定一个长度为n的正整数数列a[i]. 定义2个位置的graze值为两者位置差与数值差的和,即graze(x,y)=|x-y|+|a[x]-a[ ...
- bzoj2989&&4170数列——二进制分组+主席树
题意的转化挺巧妙的 可以联想到曼哈顿距离! 并且,所谓的修改还要查询历史版本,并且修改之间不动只算一次,不就是给平面上加一个点吗? 看成(x,a[x])的点 就是一个菱形区域 转切比雪夫距离,变成矩形 ...
- 2019.01.22 bzoj2874: 训练士兵(主席树)
传送门 题意简述:给出一个n∗mn*mn∗m的矩阵n,m≤1e8n,m\le1e8n,m≤1e8,支持矩形加,矩形求和,强制在线. 思路:第一眼二维动态开点线段树,上网去搜有没有这种做法发现会被卡时空 ...
- 2019.01.21 洛谷P3919 【模板】可持久化数组(主席树)
传送门 题意简述:支持在某个历史版本上修改某一个位置上的值,访问某个历史版本上的某一位置的值. 思路: 用主席树直接维护历史版本即可. 代码: #include<bits/stdc++.h> ...
- 2019.01.21 bzoj3674: 可持久化并查集加强版(主席树+并查集)
传送门 题意:维护可持久化并查集,支持在某个版本连边,回到某个版本,在某个版本 询问连通性. 思路: 我们用主席树维护并查集fafafa数组,由于要查询历史版本,因此不能够用路径压缩. 可以考虑另外一 ...
- 2019.01.21 bzoj1758: [Wc2010]重建计划(01分数规划+长链剖分+线段树)
传送门 长链剖分好题. 题意简述:给一棵树,问边数在[L,R][L,R][L,R]之间的路径权值和与边数之比的最大值. 思路: 用脚指头想都知道要01分数规划. 考虑怎么checkcheckcheck ...
- 2019.01.21 bzoj2441: [中山市选2011]小W的问题(树状数组+权值线段树)
传送门 数据结构优化计数菜题. 题意简述:给nnn个点问有多少个www型. www型的定义: 由5个不同的点组成,满足x1<x2<x3<x4<x5,x3>x1>x2 ...
- 2019.01.21 NOIP训练 可持久化序列【模板】(可持久化treap)
传送门 题意简述:支持在把某个数插入到某版本的第k个位置,删除某版本第k个数,询问第k个数. 思路:用可持久化treaptreaptreap维护区间第kkk个位置的数是啥就可以了. 代码
- 2019.01.21 NOIP训练 ak树(点分治)
传送门 题意简述:给一棵带权树,问在上面随机选两个点距离是4的倍数的概率. 思路: 由于总方案数为定值n2n^2n2,所以只用求总方案数. 这个跟聪聪可可差不多,可以用类似树形dpdpdp的方法边点分 ...
随机推荐
- centos6与centos7区别
CentOS 6 vs CentOS 7的不同 (1)桌面系统[CentOS6] GNOME 2.x[CentOS7] GNOME 3.x(GNOME Shell) (2)文件系统[CentOS6 ...
- PP助手上传失效
新建的iOS项目运行到iPad上,因为需要播放本地音视频图像,所以借助PP助手将MAC上的东西导入IPAD上的项目的document里(pp助手的应用游戏----应用列表功--APP右下角查看文件) ...
- eclipse及tomcat设置编码
新装的eclipse新导入项目会乱码,解决办法: 右击项目选properties,找到resources选择utf-8 改后乱码解决 乱码解决后可能还会有红叉,project clean即可 一劳永逸 ...
- Netty---入门程序,搭建Websocket 服务器
Netty 常用的场景: 1.充当HTTP 服务器,但Netty 并没有遵循servlet 的标准,反而实现了自己的一套标准进行Http 服务: 2,RPC 远程调用,在分布式系统中常用的框架 3.S ...
- Compile、Make和Build的区别
针对Java的开发工具,一般都有Compile.Make和Build三个菜单项,完成的功能的都差不多,但是又有区别. 编译,是将源代码转换为可执行代码的过程.编译需要指定源文件和编译输出的文件路径 ...
- go语言中常用的文件和文件夹操作函数
package main; import ( "os" "log" "time" "fmt" ) //一些常用的文件操作 ...
- JFinal Model判断数据库某条记录的属性字段是否包含空值
如果做报表,一条记录中有空值,使用FreeMarker渲染word会报错,并把错误日志输出到Word中.所以需要之前判断下当前记录中属性值是否有空值. package com.huijiasoft.u ...
- maven构建ssh工程
1.1 需求 在web工程的基础上实现ssh工程的创建,规范依赖管理. 1.2 数据库环境 使用之前学习hibernate创建的数据库: 1.3 创建父工程 选择创建Maven Project ...
- .netcore webapi iis 虚拟目录下载apk文件
首先贴上微软的文档:https://docs.microsoft.com/en-us/aspnet/core/fundamentals/static-files 参考网址:http://www.cnb ...
- 9.11 h5日记
9.11 超链接标签<a></a>十分特殊改a标签内容的字体颜色,必须是直接给a 设置,给它的父级标签设置是不可行的. PS:什么是属性继承,即父级标签设置的样式后 ...