BZOJ1013 + BZOJ1923 + POJ1830 (高斯消元)
三个题放在一起写了 主要是搞搞模板 在这里简述一下怎么写高斯消元
就和代数里学的加减消元学的一样 把矩阵化为上三角形形式 然后进行回代
同时枚举当前要消元的未知数和当前化简到哪一行了
然后从这一行往后 找这一列的一个不为0的系数
如果这一列以后的每一行都是0了 那么就说明当前这个未知数可以作为一个自由元 就是有无数解的意思
然后继续枚举下一个未知数
如果找到一个不为0的 和当前这一行的所有元素swap一下 然后除了这一行外 把其他所有行在这一列的系数消为0
最后答案存在每一行的第n + 1个位置
如果化简完了 如果存在后面的某一行 他的n + 1的值不等于0 那么就是无解
bzoj1013
#include <stdio.h>
#include <algorithm>
#include <cmath>
#include <iostream>
#include <string.h>
using namespace std;
double eps = 1e-; int n;
double a[][];
double zb[][]; void gauss()
{
int now = , to;
for(int i = ; i <= n; i++)
{
for(to = now; to <= n; to++) if(fabs(a[to][i]) > eps) break;
if(to > n) continue; if(to != now)
for(int j = ; j <= n + ; j++) swap(a[to][j], a[now][j]); double tmp = a[now][i];
for(int j = ; j <= n + ; j++) a[now][j] /= tmp;
for(int j = ; j <= n; j++)
if(j != now)
{
tmp = a[j][i];
for(int k = ; k <= n + ; k++) a[j][k] -= tmp * a[now][k];
}
now++;
}
} int main()
{
cin>>n;
for(int i = ; i <= n + ; i++)
{
for(int j = ; j <= n; j++) scanf("%lf", &zb[i][j]);
if(i > )
for(int j = ; j <= n; j++) a[i - ][j] = 2.0 * (zb[i][j] - zb[][j]), a[i - ][n + ] += zb[i][j] * zb[i][j] - zb[][j] * zb[][j];
}
gauss();
for(int i = ; i <= n - ; i++) printf("%.3lf ", a[i][n + ]);
printf("%.3lf\n", a[n][n + ]);
return ;
}
bzoj1923 高斯消元的时间复杂度是n三方的 然后这个题数据是1000 10s居然水过去了 听说有用bitset优化的方法 (以后再学吧
#include <stdio.h>
#include <algorithm>
#include <iostream>
#include <string.h>
using namespace std; int n, m, x, ans;
int a[][]; void gauss1()
{
int now = , to;
for(int i = ; i <= n; i++)
{
for(to = now; to <= m; to++) if(a[to][i]) break;
if(to > m)
{
ans = -;
return;
}
ans = max(ans, to); if(to != now)
for(int j = ; j <= n + ; j++) swap(a[to][j], a[now][j]); for(int j = ; j <= m; j++)
if(j != now && a[j][i])
for(int k = ; k <= n + ; k++) a[j][k] ^= a[now][k];
now++;
}
} int main()
{
cin>>n>>m;
for(int i = ; i <= m; i++)
{
char s[];
scanf("%s %d", s, &x);
int len = strlen(s);
for(int j = ; j < len; j++) a[i][j + ] = s[j] - '';
a[i][len + ] = x;
} gauss1();
if(ans == -) puts("Cannot Determine");
else
{
printf("%d\n", ans);
for(int i = ; i <= n; i++)
{
if(a[i][n + ]) puts("?y7M#");
else puts("Earth");
}
}
return ;
}
POJ1830 入门题
#include <stdio.h>
#include <algorithm>
#include <iostream>
#include <string.h>
using namespace std; int ans;
int q[];
int w[];
int a[][]; void gauss(int n, int m)
{
ans = ;
int now = , to;
for(int i = ; i <= n; i++)
{
for(to = now; to <= m; to++) if(a[to][i]) break;
if(to > m)
{
ans++;
continue;
} if(to != now)
for(int j = ; j <= n + ; j++) swap(a[to][j], a[now][j]); for(int j = ; j <= m; j++)
if(j != now && a[j][i])
for(int k = ; k <= n + ; k++) a[j][k] ^= a[now][k];
now++;
}
for(int i = now; i <= m; i++)
if(a[i][n + ])
{
ans = -;
return;
}
} int main()
{
int T;
scanf("%d", &T);
while(T--)
{
memset(a, , sizeof(a));
int n; scanf("%d", &n);
for(int i = ; i <= n; i++) scanf("%d", &q[i]);
for(int i = ; i <= n; i++) scanf("%d", &w[i]), w[i] ^= q[i], a[i][n + ] = w[i];
for(int i = ; i <= n; i++) a[i][i] = ; int u, v;
while(~scanf("%d%d", &u, &v) && u + v) a[v][u] = ;
gauss(n, n);
if(ans == -) puts("Oh,it's impossible~!!");
else printf("%d\n", << ans);
}
return ;
}
BZOJ1013 + BZOJ1923 + POJ1830 (高斯消元)的更多相关文章
- poj1830(高斯消元解mod2方程组)
题目链接:http://poj.org/problem?id=1830 题意:中文题诶- 思路:高斯消元解 mod2 方程组 有 n 个变元,根据给出的条件列 n 个方程组,初始状态和终止状态不同的位 ...
- *POJ1830 高斯消元
开关问题 Time Limit: 1000MS Memory Limit: 30000K Total Submissions: 8010 Accepted: 3161 Description ...
- 【BZOJ1013】球形空间产生器(高斯消元)
[BZOJ1013]球形空间产生器(高斯消元) 题面 Description 有一个球形空间产生器能够在n维空间中产生一个坚硬的球体.现在,你被困在了这个n维球体中,你只知道球 面上n+1个点的坐标, ...
- 【BZOJ1013】【JSOI2008】球形空间产生器 高斯消元
题目描述 有一个\(n\)维空间中的球,告诉你球面上\(n+1\)个点的坐标,求球心的坐标. \(n\leq 10\) 题解 设\(a_{i,j}\)为第\(i\)个点的第\(j\)维坐标,\(i=0 ...
- 【题解】 bzoj1923: [Sdoi2010]外星千足虫 (线性基/高斯消元)
bzoj1923,戳我戳我 Solution: 这个高斯消元/线性基很好看出来,主要是判断在第K 次统计结束后就可以确定唯一解的地方和\(bitset\)的骚操作 (我用的线性基)判断位置,我们可以每 ...
- BZOJ1013 JSOI2008 球形空间产生器sphere 【高斯消元】
BZOJ1013 JSOI2008 球形空间产生器sphere Description 有一个球形空间产生器能够在n维空间中产生一个坚硬的球体.现在,你被困在了这个n维球体中,你只知道球面上n+1个点 ...
- 【BZOJ1923】[Sdoi2010]外星千足虫 高斯消元
[BZOJ1923][Sdoi2010]外星千足虫 Description Input 第一行是两个正整数 N, M. 接下来 M行,按顺序给出 Charles 这M次使用“点足机”的统计结果.每行 ...
- BZOJ1013球形空间产生器sphere 高斯消元
@[高斯消元] Description 有一个球形空间产生器能够在n维空间中产生一个坚硬的球体.现在,你被困在了这个n维球体中,你只知道球 面上n+1个点的坐标,你需要以最快的速度确定这个n维球体的球 ...
- LG2447/BZOJ1923 「SDOI2010」外星千足虫 高斯消元
问题描述 LG2447 BZOJ1923 题解 显然是一个高斯消元,但是求的东西比较奇怪 发现这个方程组只关心奇偶性,于是可以用一个\(\mathrm{bitset}\)进行优化,用xor来进行消元操 ...
随机推荐
- 华为OJ:数字颠倒
将数字转成一个字符串即可了. import java.util.Scanner; public class convertNumber { public static void main(String ...
- charset='utf8mb4'
charset='utf8mb4' conn = pymysql.connect(host=h, port=pt, user=u, passwd=p, db=db, charset='utf8mb4' ...
- 洛谷 P1570【NOIP2013】花匠
题目描述 花匠栋栋种了一排花,每株花都有自己的高度.花儿越长越大,也越来越挤.栋栋决定 把这排中的一部分花移走,将剩下的留在原地,使得剩下的花能有空间长大,同时,栋栋希 望剩下的花排列得比较别致. 具 ...
- MySQL 基础 —— 数据类型、各种变量
1. 基本数据类型 char:prod_id char(10),括号内的内容表示字符的长度 decimal:十进制,不带参数为整数(四舍五入) text:文本类型,长度不限 2. 日期和时间处理函数 ...
- 10.06 WZZX Day1总结
今天迎来了WZZX的模拟.打开pdf的时候我特别震惊,出题的竟然是神仙KCZ!没错,就是那个活跃于各大OJ,在各大OJ排名靠前(LOJ Rank1),NOI2018 Rank16进队的kczno1!! ...
- Java 中extends与implements使用方法 (转载)
转自:http://blog.csdn.net/chen_chun_guang/article/details/6323201 初学Java语言, 代码中的extends和implements让我感到 ...
- E2017E0605-hm
carbon copy 抄送, 抄写与送达 blind carbon copy 密送 blind adj. 失明的; 盲目的,轻率的; contact n. 接触; 触点 v 联系,接触; ...
- 编写第一Spring程序
构建Spring项目 通过https://start.spring.io/来构建项目,在这里我选择了两个依赖,web 和 Actuator. 项目结构 通过eclipse导入项目,可以看到这是一个标准 ...
- BFS(最短路+路径打印) POJ 3984 迷宫问题
题目传送门 /* BFS:额,这题的数据范围太小了.但是重点是最短路的求法和输出路径的写法. dir数组记录是当前点的上一个点是从哪个方向过来的,搜索+,那么回溯- */ /************* ...
- *RelativeLayout的布局参数含义表,如android:layout_alignParentTop等
RelativeLayout 参数规则 一个控件的位置由横,纵两个方向上的距离决定 控件默认的位置在左上角. 单独使用以下属性都只是改变一个方向的相对位置. 如:只使用了android:layout_ ...