谁是英雄

时间限制:1000 ms  |  内存限制:65535 KB
难度:3
描述

十个数学家(编号0-9)乘气球飞行在太平洋上空。当横越赤道时,他们决定庆祝一下这一壮举。于是他们开了一瓶香槟。不幸

的是,软木塞在气球上打了一个洞,氢气泄漏,气球开始下降,眼看就要落入海中,所有人将要被鲨鱼吃掉。

但是尚有一线生机--若其中一人牺牲自己跳下去的话,那他的朋友们还能多活一会儿。但仍然有一个问题存在--谁

跳下去?所以他们想了一个非常公平的办法来解决这个问题--首先,每人写一个整数ai;然后计

算出a1×a2×a3×a4×……×a10的积的约数的个数N。例如,6的约数有4个(1、2、3、6),则N为4。这位牺牲自

己的英雄将由N的个位数来决定(编号为N的个位数的人要跳下去)。你的任务是求出N。

输入
T(T<=10)组测试数据。

十个整数ai(1≤ai≤10000)。
输出
N的个位数
样例输入
1
1 2 6 1 3 1 1 1 1 1
样例输出
9

其实以前做过类似求乘积的约数个数,很明显乘积会超范围,肯定是要从因子入手的,于是百度百科了一下“约数个数定理”,就知道有快速方法,只不过要先求出质因子个数,假如其乘积的质因子a1,a2,a3,a4...ak的个数分别是p1,p2,p3...pk,那么约数个数sum=(p1+1)(p2+1)(p3+1)....(pk+1);这便是约数个数定理;数据范围是10000,只有10个数,所以可以暴力分解质因数然后求出每个质因数的个数即可;

下面提供两种代码:

1.0    先打个10000的素数表,因为这10个数每个数都要分解质因子,只需将每个数分别分解(怎么分解请看代码):

using namespace std;
const int N=10000+10;
int k,b[N],s[N],a[N]
void init()
{
k=0;
memset(b,-1,sizeof(b));
memset(s,0,sizeof(s));//将10000内的素数储存起来,分解的时候直接除以素数;
b[0]=b[1]=0;
for(int i=2; i<=N; i++)
if(b[i])
{
s[k++]=i;
if(i>N/i) continue;
for(int j=i*i; j<=N; j+=i)
b[j]=0;
}
}
int main()
{
int t,x,i,j;
init();
scanf("%d",&t);
while(t--)
{
memset(a,0,sizeof(a));//存每个质因子出现的次数;
int f=1;
for(i=1; i<=10; i++)
{
scanf("%d",&x);
if(x==1)
continue;
else//分解质因数;
{
f=0;
for(j=0; j<k; j++)
{
while(x%s[j]==0)//注意一直除下去;
{
x/=s[j];
a[s[j]]++;//质因子出现的次数;
}
if(x==1) break;
if(b[x])//如果x本身就是素数了再加起来;比如:6/2=3;
{
a[x]++;
break;
}
}
}
}
if(f)//如果10个数全部是1则输出1;
{
printf("1\n");
continue;
}
else
{
int sum=1;
for(i=0; i<k; i++)//这里查找就方便一点;
if(a[s[i]])
sum*=(a1[s[i]]+1);
printf("%d\n",sum%10);//千万注意取个位数,题意描述不清,不然此代码一遍过;
}
}
return 0;
}

2.0  原理和上面一样,只不过内存少了一点吗,就是基于数据个数和范围都较小,所以分解质因子的时候暴力分解:

using namespace std;
const int N=10000+10;
int b[N],a[N];
int main()
{
int t,x,i,j;
scanf("%d",&t);
while(t--)
{
memset(a,0,sizeof(a));
for(i=1; i<=10; i++)
{
scanf("%d",&x);
for(j=2; x!=1&&j<=10000; j++)//分解质因数;
if(x%j==0)
{
x/=j;
a[j]++;
j--;//这里和上面那个while()含义一样,
}
}
int sum=1;
for(i=0; i<10000; i++)//这里查询就比较慢了,很多都不是素数况且没有出现过;
if(a[i])
sum*=(a[i]+1);
printf("%d\n",sum%10);
}
return 0;
}

NYOJ-476谁是英雄,分解质因子求约数个数!的更多相关文章

  1. N!分解质因子p的个数_快速求组合数C(n,m)

    int f(int n,int p) { ) ; return f(n/p,p) + n/p; } https://www.xuebuyuan.com/2867209.html 求组合数C(n,m)( ...

  2. HDU 4497 GCD and LCM(分解质因子+排列组合)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4497 题意:已知GCD(x, y, z) = G,LCM(x, y, z) = L.告诉你G.L,求满 ...

  3. UVA 10780 Again Prime? No Time. 分解质因子

    The problem statement is very easy. Given a number n you have to determine the largest power of m,no ...

  4. hdu6237 分解质因子

    题意:给一堆石子,每次移动一颗到另一堆,要求最小次数使得,所有石子数gcd>1 题解:枚举所有质因子,然后找次数最小的那一个,统计次数时,我们可以事先记录下每堆石子余质因子 的和,对所有石子取余 ...

  5. HDU 4135 Co-prime (容斥+分解质因子)

    <题目链接> 题目大意: 给定区间[A,B](1 <= A <= B <= 10 15)和N(1 <=N <= 10 9),求出该区间中与N互质的数的个数. ...

  6. Minimum Sum LCM UVA - 10791(分解质因子)

    对于一个数n 设它有两个不是互质的因子a和b   即lcm(a,b) = n 且gcd为a和b的最大公约数 则n = a/gcd * b: 因为a/gcd 与 b 的最大公约数也是n 且 a/gcd ...

  7. Codeforces Round #828 (Div. 3) E2. Divisible Numbers (分解质因子,dfs判断x,y)

    题目链接 题目大意 给定a,b,c,d四个数,其中a<c,b<c,现在让你寻找一对数(x,y),满足一下条件: 1. a<x<c,b<y<d 2. (x*y)%(a ...

  8. BNU 13259.Story of Tomisu Ghost 分解质因子

    Story of Tomisu Ghost It is now 2150 AD and problem-setters are having a horrified time as the ghost ...

  9. HDU1452:Happy 2004(求因子和+分解质因子+逆元)上一题的简单版

    题目链接:传送门 题目要求:求S(2004^x)%29. 题目解析:因子和函数为乘性函数,所以首先质因子分解s(2004^x)=s(2^2*x)*s(3^x)*s(167^x); 因为2与29,166 ...

随机推荐

  1. 51nod 1126 求递推序列的第N项

    1126 求递推序列的第N项  基准时间限制:1 秒 空间限制:131072 KB 分值: 10 难度:2级算法题  收藏  关注 有一个序列是这样定义的:f(1) = 1, f(2) = 1, f( ...

  2. 51nod1183 编辑距离

    1183 编辑距离 基准时间限制:1 秒 空间限制:131072 KB 分值: 0 难度:基础题  收藏  关注 编辑距离,又称Levenshtein距离(也叫做Edit Distance),是指两个 ...

  3. codevs 3044 矩形面积求并 || hdu 1542

    这个线段树的作用其实是维护一组(1维 平面(?) 上的)线段覆盖的区域的总长度,支持加入/删除一条线段. 线段树只能维护整数下标,因此要离散化. 也可以理解为将每一条处理的线段分解为一些小线段,要求每 ...

  4. 递推+高精度+找规律 UVA 10254 The Priest Mathematician

    题目传送门 /* 题意:汉诺塔问题变形,多了第四个盘子可以放前k个塔,然后n-k个是经典的汉诺塔问题,问最少操作次数 递推+高精度+找规律:f[k]表示前k放在第四个盘子,g[n-k]表示经典三个盘子 ...

  5. Angular广播/消息通知的接收与发送

    一.在接收页:添加引用: private eventManager: JhiEventManager: 接收通知的方法: // 接收通知(新建.编辑.删除页发送过来的通知) // upmsMenuLi ...

  6. iOS之NSAttributedString-------字符属性

    NSAttributedString 字符属性 字符属性可以应用于 attributed string 的文本中. NSString *const NSFontAttributeName;(字体) N ...

  7. Farseer.net轻量级ORM开源框架 V1.x 入门篇:数据库配置文件

    导航 目   录:Farseer.net轻量级ORM开源框架 目录 上一篇:Farseer.net轻量级ORM开源框架 V1.x 入门篇:新版本说明 下一篇:Farseer.net轻量级ORM开源框架 ...

  8. JAVA编程不得不看的几本经典书籍

    为了帮助对java编程感兴趣的同学更好.更快的提高编程技术,武汉北大青鸟光谷校区专业老师在此推荐几本学习编程非常有用的书籍,以供大家参考. 入门类 1.<java从入门到精通>(第3版) ...

  9. SVG 浏览器支持

    可以参考以下链接: https://caniuse.com/#search=svg https://en.wikipedia.org/wiki/Comparison_of_layout_engines ...

  10. JavaScipt30(第二十二个案例)(主要知识点:getBoundingClientRect)

    这是第二十二个案例,这个例子实现的是鼠标移入a标签时,将其高亮. 附上项目链接: https://github.com/wesbos/JavaScript30 以下为注释后的源码: <scrip ...