POJ 1995 (快速幂) 求(A1B1+A2B2+ ... +AHBH)mod M
Description
Each player chooses two numbers Ai and Bi and writes them on a slip of paper. Others cannot see the numbers. In a given moment all players show their numbers to the others. The goal is to determine the sum of all expressions Ai Bi from all players including oneself and determine the remainder after division by a given number M. The winner is the one who first determines the correct result. According to the players' experience it is possible to increase the difficulty by choosing higher numbers.
You should write a program that calculates the result and is able to find out who won the game.
Input
Output
(A1B1+A2B2+ ... +AHBH)mod M.
Sample Input
3
16
4
2 3
3 4
4 5
5 6
36123
1
2374859 3029382
17
1
3 18132
Sample Output
2
13195
13
结合律 |
((a+b) mod p + c)mod p = (a + (b+c) mod p) mod p((a*b) mod p * c)mod p = (a * (b*c) mod p) mod p |
交换律 |
(a + b) mod p = (b+a) mod p(a × b) mod p = (b × a) mod p |
分配律 |
((a +b)mod p × c) mod p = ((a × c) mod p + (b × c) mod p) mod p(a×b) mod c=(a mod c * b mod c) mod c(a+b) mod c=(a mod c+ b mod c) mod c(a-b) mod c=(a mod c- b mod c) mod c |
#include<cstdio>
__int64 f(__int64 a,__int64 b,__int64 m)
{
__int64 sun=;
while(b)
{
if(b % != )
{
sun=sun*a%m;
}
a=a*a%m;
b/=;
}
return sun%m;
}
int main()
{
int t,i;
__int64 n,m,sum,a,b;
scanf("%d",&t);
while(t--)
{
sum=;
scanf("%I64d",&m);
scanf("%I64d",&n);
for(i = ; i < n; i++)
{
scanf("%I64d %I64d",&a,&b);
sum+=f(a,b,m);
// printf("---%d--\n",f(a,b,m));
}
printf("%I64d\n",sum%m);
}
}
POJ 1995 (快速幂) 求(A1B1+A2B2+ ... +AHBH)mod M的更多相关文章
- Raising Modulo Numbers(POJ 1995 快速幂)
Raising Modulo Numbers Time Limit: 1000MS Memory Limit: 30000K Total Submissions: 5934 Accepted: ...
- POJ 1995 快速幂模板
http://poj.org/problem?id=1995 简单的快速幂问题 要注意num每次加过以后也要取余,否则会出问题 #include<iostream> #include< ...
- poj 1995 快速幂
题意:给出A1,…,AH,B1,…,BH以及M,求(A1^B1+A2^B2+ … +AH^BH)mod M. 思路:快速幂 实例 3^11 11=2^0+2^1+2^3 => 3^1*3 ...
- POJ-3070Fibonacci(矩阵快速幂求Fibonacci数列) uva 10689 Yet another Number Sequence【矩阵快速幂】
典型的两道矩阵快速幂求斐波那契数列 POJ 那是 默认a=0,b=1 UVA 一般情况是 斐波那契f(n)=(n-1)次幂情况下的(ans.m[0][0] * b + ans.m[0][1] * a) ...
- HDU4869:Turn the pokers(快速幂求逆元+组合数)
题意: 给出n次翻转和m张牌,牌相同且一开始背面向上,输入n个数xi,表示xi张牌翻转,问最后得到的牌的情况的总数. 思路: 首先我们可以假设一开始牌背面状态为0,正面则为1,最后即是求ΣC(m,k) ...
- 小白月赛13 小A的路径 (矩阵快速幂求距离为k的路径数)
链接:https://ac.nowcoder.com/acm/contest/549/E来源:牛客网 时间限制:C/C++ 1秒,其他语言2秒 空间限制:C/C++ 262144K,其他语言52428 ...
- hdu 2065 "红色病毒"问题(快速幂求模)
n=1 --> ans = 2 = 1*2 = 2^0(2^0+1) n=2 --> ans = 6 = 2*3 = 2^1(2^1+1) n=3 --> ans = 20 ...
- codeforce 227E 矩阵快速幂求斐波那契+N个连续数求最大公约数+斐波那契数列的性质
E. Anniversary time limit per test2 seconds memory limit per test256 megabytes inputstandard input o ...
- POJ 3613 快速幂+Floyd变形(求限制k条路径的最短路)
题意: 给你一个无向图,然后给了一个起点s和终点e,然后问从s到e的最短路是多少,中途有一个限制,那就是必须走k条边,路径可以反复走. 思路: 感觉很赞的一个题目,据说证明是什 ...
随机推荐
- Tree CodeForces -932D
错误记录:如下注释语句 #include<cstdio> #include<algorithm> using namespace std; typedef long long ...
- Cunning Gena CodeForces - 417D
Cunning Gena CodeForces - 417D 题意 先将小伙伴按需要的监视器数量排序.然后ans[i][j]表示前i个小伙伴完成j集合内题目所需最少钱.那么按顺序枚举小伙伴,用ans[ ...
- DFS Codeforces Round #306 (Div. 2) B. Preparing Olympiad
题目传送门 /* DFS: 排序后一个一个出发往后找,找到>r为止,比赛写了return : */ #include <cstdio> #include <iostream&g ...
- java数组实现红包的方法
package Hongbao; import java.text.DecimalFormat; import java.util.Scanner; public class Hongbao { pu ...
- 移动端UI自动化Appium测试——DesiredCapabilities参数配置及含义
一.DesiredCapabilities的作用: 负责启动服务端时的参数设置,启动session的时候是必须提供的. Desired Capabilities本质上是key value的对象,它告诉 ...
- Oracle用户角色权限相关视图
常用相关视图概述 DBA_SYS_PRIVS: 查询某个用户所拥有的系统权限 USER_SYS_PRIVS: 当前用户所拥有的系统权限 SESSION_PRIVS: 当前用户所拥有的全部权限 ROLE ...
- Vue.js学习笔记--1.基础HTML和JS属性的使用
整理自官网教程 -- https://cn.vuejs.org/ 1. 在HTML文件底部引入Vue <script src="https://cdn.jsdelivr.net/npm ...
- CentOS 7 下配置 firewalld(firewall-cmd)实现 NAT 转发 软路由
如果配合 DHCP 服务或实现更多功能. ☼ NAT 转发软路由 开启 NAT 转发之后,只要本机可以上网,不论是单网卡还是多网卡,局域网内的其他机器可以将默认网关设置为已开启 NAT 转发的服务器 ...
- (2)《Head First HTML与CSS》学习笔记---img与基于标准的HTML5
1.浏览器处理图像的过程: 1.服务器获取文件,显示出文本结构,以及预留默认的大小给<img>(如果该<img>有width-1值和height-1值,则根据这个值提前设好页面 ...
- cookie设置和读取以及获取超链接参数
function setCookie(c_name, value, expiredays) { var exdate = new Date() exdate.setDate(exdate.getDat ...