[luoguP2158] [SDOI2008]仪仗队(数论)
可以看出 (i, j) 能被看到,(i * k, j * k) 都会被挡住
暴力
所以 gcd(i, j) == 1 的话 ans ++
那么可以枚举一半(中轴对称),求解答案,只能拿30分
#include <cstdio>
#include <iostream> int n, ans; inline int read()
{
int x = 0, f = 1;
char ch = getchar();
for(; !isdigit(ch); ch = getchar()) if(ch == '-') f = -1;
for(; isdigit(ch); ch = getchar()) x = (x << 1) + (x << 3) + ch - '0';
return x * f;
} inline int gcd(int x, int y)
{
return !y ? x : gcd(y, x % y);
} int main()
{
int i, j;
n = read();
if(n == 1)
{
puts("0");
return 0;
}
for(i = 1; i < n; i++)
for(j = i + 1; j < n; j++)
if(gcd(i, j) == 1)
ans++;
printf("%d\n", ans * 2 + 3);
return 0;
}
正解
可以看出,gcd(i,j) == 1 才能对答案有贡献,也就是互质,想到什么?phi 值
其实上面的暴力过程仔细来看也就是 phi 值 的求解
#include <cstdio>
#include <iostream> int n, ans;
int phi[500001]; inline int read()
{
int x = 0, f = 1;
char ch = getchar();
for(; !isdigit(ch); ch = getchar()) if(ch == '-') f = -1;
for(; isdigit(ch); ch = getchar()) x = (x << 1) + (x << 3) + ch - '0';
return x * f;
} inline void euler_phi()
{
int i, j;
phi[1] = 1;
for(i = 2; i < n; i++)
if(!phi[i])
for(j = i; j < n; j += i)
{
if(!phi[j]) phi[j] = j;
phi[j] = phi[j] / i * (i - 1);
}
} int main()
{
int i, j;
n = read();
if(n == 1)
{
puts("0");
return 0;
}
euler_phi();
for(i = 1; i < n; i++) ans += phi[i];
printf("%d\n", ans * 2 + 1);
return 0;
}
[luoguP2158] [SDOI2008]仪仗队(数论)的更多相关文章
- [LuoguP2158][SDOI2008]仪仗队
[LuoguP2158][SDOI2008]仪仗队(Link) 现在你有一个\(N \times N\)的矩阵,求你站在\((1,1)\)点能看到的点的总数. 很简洁的题面. 这道题看起来很难,但是稍 ...
- 【bzoj2190】: [SDOI2008]仪仗队 数论-欧拉函数
[bzoj2190]: [SDOI2008]仪仗队 在第i行当且仅当gcd(i,j)=1 可以被看到 欧拉函数求和 没了 /* http://www.cnblogs.com/karl07/ */ #i ...
- 【bzoj2190】[SDOI2008]仪仗队 数论 欧拉函数 筛法
http://www.lydsy.com/JudgeOnline/problem.php?id=2190 裸欧拉函数,先不计算对角线(a,a)的一列,然后算出1到n-1的所有欧拉函数相加*2,再加 ...
- BZOJ-2190 仪仗队 数论+欧拉函数(线性筛)
今天zky学长讲数论,上午水,舒爽的不行..后来下午直接while(true){懵逼:}死循全程懵逼....(可怕)Thinking Bear. 2190: [SDOI2008]仪仗队 Time Li ...
- BZOJ 2190: [SDOI2008]仪仗队( 欧拉函数 )
假设C君为(0, 0), 则右上方为(n - 1, n - 1). 一个点(x, y) 能被看到的前提是gcd(x, y) = 1, 所以 answer = ∑ phi(i) * 2 + 2 - 1 ...
- BZOJ 2190: [SDOI2008]仪仗队
2190: [SDOI2008]仪仗队 Time Limit: 10 Sec Memory Limit: 259 MBSubmit: 2689 Solved: 1713[Submit][Statu ...
- [SDOI2008]仪仗队
P2158 [SDOI2008]仪仗队 题目描述 作为体育委员,C君负责这次运动会仪仗队的训练.仪仗队是由学生组成的N * N的方阵,为了保证队伍在行进中整齐划一,C君会跟在仪仗队的左后方,根据其视线 ...
- P2158 [SDOI2008]仪仗队
P2158 [SDOI2008]仪仗队图是关于y=x对称的,横纵坐标一定是互质的否则在之前就被扫过了,所以就可以用欧拉函数再*2就完了. #include<iostream> #inclu ...
- 洛谷 P2158 [SDOI2008]仪仗队 解题报告
P2158 [SDOI2008]仪仗队 题目描述 作为体育委员,C君负责这次运动会仪仗队的训练.仪仗队是由学生组成的N * N的方阵,为了保证队伍在行进中整齐划一,C君会跟在仪仗队的左后方,根据其视线 ...
随机推荐
- [转]c++中的string常用函数用法总结
标准c++中string类函数介绍 注意不是CString之所以抛弃char*的字符串而选用C++标准程序库中的string类,是因为他和前者比较起来,不必 担心内存是否足够.字符串长度等等,而且作为 ...
- WCF 相关配置
WCF错误:413 Request Entity Too Large 在我们用WCF传输数据的时候,如果启用默认配置,传输的数据量过大,经常会出这个错误. WCF包含服务端与客户端,所以这个错误可能出 ...
- 使用_CRTDBG_LEAK_CHECK_DF检查VC程序的内存泄漏(转)
我们知道,MFC程序如果检测到存在内存泄漏,退出程序的时候会在调试窗口提醒内存泄漏.例如: class CMyApp : public CWinApp{public:BOOL InitApplicat ...
- 通过机智云APP来学习安卓
效果非常之好,安卓6.0之后就进行了动态授权.按照网上的视频一步一步调试的非常成功,非常舒服.
- vuex的各个细节理解(因人而异)
应用级的状态集中放在store中: 改变状态的方式是提交mutations,这是个同步的事物: 异步逻辑应该封装在action中. const vuex_store = new Vuex.store( ...
- radiobutton group
1. 环境:VS2010 2. 分组 将radio1.radio2.radio3分为1组,radio4.radio5分为另一组: 方法:设置 radio1 的 属性: group.tabstop ...
- 用meta name="renderer" content="webkit|ie-comp|ie-stand"来切换360双核安全浏览器的极速模式和兼容模式
以下信息摘自360官方网站: 浏览模式:极速模式.兼容模式及IE9高速模式是360浏览器显示网页时使用的三种模式:极速模式表示极速模式兼容模式表示兼容模式IE9IE10模式表示IE9/IE10模式(仅 ...
- ThinkPHP---辅助方法
[三]Tp常见的辅助方法 原生SQL语句里除了目前所使用的基本操作增删改查,还有类似于group.where.order.limit等这样的字句. ThinkPHP封装了相应的子句方法:封装的方法都在 ...
- gym101673G. A Question of Ingestion (DP)
题意:有最多100天 每天有一个食物量 你一开始有一个最大胃口表示你最开始能吃多少食物 如果你昨天吃了 那么今天的胃口为昨天的2/3 如果你前天吃了 昨天没吃 那么你的胃口可以恢复到前天的情况 如果你 ...
- 04StringBuffer相关知识、Arrays类、类型互换、正则、Date相关
04StringBuffer相关知识.Arrays类.类型互换.正则.Date相关-2018.7.12 1.StringBuffer A:StringBuffer的构造方法: public Strin ...