传送门

可以看出 (i, j) 能被看到,(i * k, j * k) 都会被挡住

暴力

所以 gcd(i, j) == 1 的话 ans ++

那么可以枚举一半(中轴对称),求解答案,只能拿30分

#include <cstdio>
#include <iostream> int n, ans; inline int read()
{
int x = 0, f = 1;
char ch = getchar();
for(; !isdigit(ch); ch = getchar()) if(ch == '-') f = -1;
for(; isdigit(ch); ch = getchar()) x = (x << 1) + (x << 3) + ch - '0';
return x * f;
} inline int gcd(int x, int y)
{
return !y ? x : gcd(y, x % y);
} int main()
{
int i, j;
n = read();
if(n == 1)
{
puts("0");
return 0;
}
for(i = 1; i < n; i++)
for(j = i + 1; j < n; j++)
if(gcd(i, j) == 1)
ans++;
printf("%d\n", ans * 2 + 3);
return 0;
}

 正解

可以看出,gcd(i,j) == 1 才能对答案有贡献,也就是互质,想到什么?phi 值

其实上面的暴力过程仔细来看也就是 phi 值 的求解

#include <cstdio>
#include <iostream> int n, ans;
int phi[500001]; inline int read()
{
int x = 0, f = 1;
char ch = getchar();
for(; !isdigit(ch); ch = getchar()) if(ch == '-') f = -1;
for(; isdigit(ch); ch = getchar()) x = (x << 1) + (x << 3) + ch - '0';
return x * f;
} inline void euler_phi()
{
int i, j;
phi[1] = 1;
for(i = 2; i < n; i++)
if(!phi[i])
for(j = i; j < n; j += i)
{
if(!phi[j]) phi[j] = j;
phi[j] = phi[j] / i * (i - 1);
}
} int main()
{
int i, j;
n = read();
if(n == 1)
{
puts("0");
return 0;
}
euler_phi();
for(i = 1; i < n; i++) ans += phi[i];
printf("%d\n", ans * 2 + 1);
return 0;
}

  

[luoguP2158] [SDOI2008]仪仗队(数论)的更多相关文章

  1. [LuoguP2158][SDOI2008]仪仗队

    [LuoguP2158][SDOI2008]仪仗队(Link) 现在你有一个\(N \times N\)的矩阵,求你站在\((1,1)\)点能看到的点的总数. 很简洁的题面. 这道题看起来很难,但是稍 ...

  2. 【bzoj2190】: [SDOI2008]仪仗队 数论-欧拉函数

    [bzoj2190]: [SDOI2008]仪仗队 在第i行当且仅当gcd(i,j)=1 可以被看到 欧拉函数求和 没了 /* http://www.cnblogs.com/karl07/ */ #i ...

  3. 【bzoj2190】[SDOI2008]仪仗队 数论 欧拉函数 筛法

    http://www.lydsy.com/JudgeOnline/problem.php?id=2190   裸欧拉函数,先不计算对角线(a,a)的一列,然后算出1到n-1的所有欧拉函数相加*2,再加 ...

  4. BZOJ-2190 仪仗队 数论+欧拉函数(线性筛)

    今天zky学长讲数论,上午水,舒爽的不行..后来下午直接while(true){懵逼:}死循全程懵逼....(可怕)Thinking Bear. 2190: [SDOI2008]仪仗队 Time Li ...

  5. BZOJ 2190: [SDOI2008]仪仗队( 欧拉函数 )

    假设C君为(0, 0), 则右上方为(n - 1, n - 1). 一个点(x, y) 能被看到的前提是gcd(x, y) = 1, 所以 answer = ∑ phi(i) * 2 + 2 - 1 ...

  6. BZOJ 2190: [SDOI2008]仪仗队

    2190: [SDOI2008]仪仗队 Time Limit: 10 Sec  Memory Limit: 259 MBSubmit: 2689  Solved: 1713[Submit][Statu ...

  7. [SDOI2008]仪仗队

    P2158 [SDOI2008]仪仗队 题目描述 作为体育委员,C君负责这次运动会仪仗队的训练.仪仗队是由学生组成的N * N的方阵,为了保证队伍在行进中整齐划一,C君会跟在仪仗队的左后方,根据其视线 ...

  8. P2158 [SDOI2008]仪仗队

    P2158 [SDOI2008]仪仗队图是关于y=x对称的,横纵坐标一定是互质的否则在之前就被扫过了,所以就可以用欧拉函数再*2就完了. #include<iostream> #inclu ...

  9. 洛谷 P2158 [SDOI2008]仪仗队 解题报告

    P2158 [SDOI2008]仪仗队 题目描述 作为体育委员,C君负责这次运动会仪仗队的训练.仪仗队是由学生组成的N * N的方阵,为了保证队伍在行进中整齐划一,C君会跟在仪仗队的左后方,根据其视线 ...

随机推荐

  1. bzoj4720: [Noip2016]换教室(期望dp)

    4720: [Noip2016]换教室 Time Limit: 20 Sec  Memory Limit: 512 MBSubmit: 1294  Solved: 698[Submit][Status ...

  2. mysql之distinct

    记录一下这几天看mysql必知必会的小知识点: 关于mysql查询不同的行 比如记录表中 查询有多少个城市 可能查出很多城市 可以用distinct 来解决这个问题 SELECT DISTINCT c ...

  3. redis简介及常见问题

    目录 简介 特点 优点 高性能 高并发 为什么要用 redis 而不用 map/guava 做缓存? redis 和 memcached 的区别 Redis快的原因 为什么redis是单线程 为什么r ...

  4. 个人作品:EasyPicker(轻取)简洁而又实用的文件收取Web应用

    EasyPicker简洁实用且方便的在线文件收取Web应用  小弟我作为班上的学委,有一个伟大的职责,收发各科作业(尤其是专业课的上机课),上机==写报告,此时就产生了实验报告这个玩意儿,一个班少则4 ...

  5. 乐搏讲自动化测试-Python发展背景(1)

    相信小伙伴们都知道,随着软件测试行业的发展和进步自动化测试已经成为必然.在竞争日益激烈的市场环境中也是你升职加薪的利器. 所以,小编决定从今天起!将要系统.连续.高质量的持续更新「整套自动化测试」文章 ...

  6. python自动化测试学习笔记-6excel操作xlwt、xlrd、xlutils模块

    python中通过xlwt.xlrd和xlutils操作xls xlwt模块用于在内存中生成一个xls/xlsx对象,增加表格数据,并把内存中的xls对象保存为本地磁盘xls文件; xlrd模块用于把 ...

  7. SVN服务器搭建 内网可用外网不可用的问题

    检查1:内网端口映射到了外网端口,这样外网才能够访问到 映射的方式有两种: 1.通过路由器的虚拟服务器功能,网上一搜一大把. 2.将路由器的DMZ功能开启,并把DMZ主机设置为目标计算机. 检查2:S ...

  8. overflow实现隐藏滚动条同时又可以滚动

    .scroll-list ul{ white-space: nowrap; -webkit-overflow-scrolling: touch; overflow-x: auto; overflow- ...

  9. golang 并发锁的陷阱

    错误代码示例 package main import ( "sync" "strconv" "fmt" ) type Node struct ...

  10. 【C++】智能指针简述(一):智能指针的引入

    智能指针是C++中一种利用RAII机制(后面解释),通过对象来管理指针的一种方式. 在C++中,动态开辟的内存需要我们自己去维护,在出函数作用域或程序异常退出之前,我们必须手动释放掉它,否则的话就会引 ...