http://www.cnblogs.com/jianglangcaijin/p/4033399.html

——lych_cys

我还是太菜了,考虑一个函数的值得时候,首先考虑是否积性函数,不行的话就强行展开,

如果是的话考虑最小因子的高次幂的情况

然后还要一点点猜想才行。

#include <map>
#include <cmath>
#include <queue>
#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
using namespace std;
#define F(i,j,k) for (int i=j;i<=k;++i)
#define D(i,j,k) for (int i=j;i>=k;--i)
#define ll long long
#define mp make_pair
#define md 1000000007 ll d,m;
ll h[110],a[110][110]; ll ksm(ll a,ll b)
{
if (b<0) return ksm(ksm(a,md-2),-b);
ll ret=1;
while (b)
{
if (b&1) (ret*=a)%=md;
(a*=a)%=md;
b>>=1;
}
return ret;
} ll pp[110],A[110]; void init()
{
int i,j;
for (i=0;i<=d+1;++i)
{
pp[i]=(ksm(i+1,d)+(i==0?0:pp[i-1]))%md;
a[i][d+2]=pp[i];
a[i][0]=1;
ll pre=1;
for (j=1;j<=d+1;++j)
{
(pre*=(i+1))%=md;
a[i][j]=pre;
}
}
int k;
for (i=0;i<=d+1;++i)
{
for (j=i;j<=d+1;++j) if (a[j][i]) break;
if (i!=j) for (k=0;k<=d+2;++k) swap(a[i][k],a[j][k]);
for (j=0;j<=d+1;++j) if (j!=i&&a[j][i])
{
ll tmp=(a[j][i]*ksm(a[i][i],-1))%md;
for (k=0;k<=d+2;++k) (a[j][k]-=tmp*a[i][k])%=md;
}
}
for (i=0;i<=d+1;++i) A[i]=(a[i][d+2]*ksm(a[i][i],-1))%md;
} ll dd[1220][3]; int main()
{
scanf("%lld%lld",&d,&m);
init();
F(i,1,m) scanf("%lld%lld",&dd[i][0],&dd[i][1]);
ll ans=0;
F(i,0,d+1)
{
ll tmp=1;
F(j,1,m)
{
tmp=tmp*ksm(dd[j][0],(ll)dd[j][1]*i)%md;
tmp=tmp*(1-ksm(dd[j][0],d-i))%md;
}
ans+=A[i]*tmp%md;
ans%=md;
}
((ans%=md)+=md)%=md;
printf("%lld\n",ans);
}

  

BZOJ 3601 一个人的数论 ——莫比乌斯反演 高斯消元的更多相关文章

  1. 【bzoj3601】一个人的数论 莫比乌斯反演+高斯消元

    题目描述 题解 莫比乌斯反演+高斯消元 (前方高能:所有题目中给出的幂次d,公式里为了防止混淆,均使用了k代替) #include <cstdio> #include <cstrin ...

  2. [bzoj3601] 一个人的数论 [莫比乌斯反演+高斯消元]

    题面 传送门 思路 这题妙啊 先把式子摆出来 $f_n(d)=\sum_{i=1}^n[gcd(i,n)==1]i^d$ 这个$gcd$看着碍眼,我们把它反演掉 $f_n(d)=\sum_{i=1}^ ...

  3. bzoj 2844: albus就是要第一个出场 高斯消元

    LINK 题意:看题目不如看样例解释.给出有n个数的集合,对这些子集中的数求异或,升序统计所有子集得到的数(重复会被计入),询问一个数x,问这个数出现的第一个位置 思路:在这里要求一个所有可能出现的异 ...

  4. 【bzoj 4176】 Lucas的数论 莫比乌斯反演(杜教筛)

    Description 去年的Lucas非常喜欢数论题,但是一年以后的Lucas却不那么喜欢了. 在整理以前的试题时,发现了这样一道题目“求Sigma(f(i)),其中1<=i<=N”,其 ...

  5. BZOJ 2844 albus就是要第一个出场 ——高斯消元 线性基

    [题目分析] 高斯消元求线性基. 题目本身不难,但是两种维护线性基的方法引起了我的思考. void gauss(){ k=n; F(i,1,n){ F(j,i+1,n) if (a[j]>a[i ...

  6. bzoj 1778 [Usaco2010 Hol]Dotp 驱逐猪猡(高斯消元)

    [题意] 炸弹从1开始运动,每次有P/Q的概率爆炸,否则等概率沿边移动,问在每个城市爆炸的概率. [思路] 设M表示移动一次后i->j的概率.Mk为移动k次后的概率,则有: Mk=M^k 设S= ...

  7. bzoj 3143 [Hnoi2013]游走(贪心,高斯消元,期望方程)

    [题目链接] http://www.lydsy.com/JudgeOnline/problem.php?id=3143 [题意] 给定一个无向图,从1走到n,走过一条边得到的分数为边的标号,问一个边的 ...

  8. bzoj 1013 [JSOI2008]球形空间产生器sphere(高斯消元)

    1013: [JSOI2008]球形空间产生器sphere Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 3584  Solved: 1863[Subm ...

  9. BZOJ 1444: [Jsoi2009]有趣的游戏 [AC自动机 高斯消元]

    1444: [Jsoi2009]有趣的游戏 题意:每种字母出现概率\(p_i\),有一些长度len的字符串,求他们出现的概率 套路DP的话,\(f[i][j]\) i个字符走到节点j的概率,建出转移矩 ...

随机推荐

  1. [Ubuntu]“ubuntu.sh: 113: ubuntu.sh:Syntax error: "(" unexpected ”报错解决方法

    原因:有可能是兼容性问题 解决方法: 1.sudo dpkg-reconfigure dash   2.在弹出的窗口选择no

  2. 高效vim插件

    目录[-] 高效vim插件 插件管理利器 高效插件集 NerdTree snipMate tagbar jedi-vim eclim c.vim vim-colorschemes vim配置 一个实例 ...

  3. 0x00000124蓝屏问题解决方法

    windows7-32位系统: 0x00000124蓝屏是系统问题,win7才有的, xp系统没有 . 解决办法:下载win7蓝屏补丁包解压安装就ok了. 说明:win7蓝屏补丁KB(25286140 ...

  4. SQLITE-更新查询

    SQLite -更新查询 SQLite UPDATE查询用于修改现有表中的记录.您可以使用WHERE子句与更新查询更新选中的行,否则会被更新的所有行. 语法: UPDATE查询的WHERE子句的基本语 ...

  5. 迅为iMX6Q/PLUS开发板烧写设备树内核 Qt 系统

    迅为iMX6Q 和 iMX6PLUS 两个硬件版本,设备树镜像的烧写方法以及镜像所在目录,镜像名称全部一致. 如果用的是 iMX6Q 版本,想要烧写设备树版本镜像,请使用 iMX6Q 设备树版本的光盘 ...

  6. vue实现微信分享朋友圈和朋友功能

    vue实现微信分享朋友圈和朋友功能 A-A+ haibao  2018-10-25  11  21  6.2 k  百度已收录  前端开发 温馨提示:本文共3536个字,读完预计9分钟. 这两天在开发 ...

  7. ucosii(2.89) 在Lpc1765移植中定时器的使用。

    1,lpc1765的systicker register是24bit, cpu 频率64Mhz时候,注意不要设置systicker 的值超过24bit. 2, 使用timer 的callback函数, ...

  8. 使用vue做移动端瀑布流分页

    讲到瀑布流分页有一个方法一定是要用到的 pullToRefresh() 这个也没什么好解释的,想了解的可以去百度一下 下面上代码 <div id="main" class=& ...

  9. Maven01

    1. Maven简单介绍 Apache Maven是个项目管理和自动构建工具,基于项目对象模型(POM)的概念.  作用:完成项目的相关操作,如:编译,构建,单元测试,安装,网站生成和基于Maven部 ...

  10. JavaScript中对象的属性:如何遍历属性

    for/in 语句循环遍历对象的属性. js中获取key得到某对象中相对应的value的方法:obj.key js中根据动态key得到某对象中相对应的value的方法有二: 一.var key = & ...